Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
dd_fdd
Abstract:
Finite domain abstraction for using BDDs as sets of integers, inspired by BuDDy's fdd module.
Author:
Nikolaj Bjorner (nbjorner) 2021-04-20
Jakob Rath 2021-04-20
--*/
#include "math/dd/dd_fdd.h"
namespace dd {
fdd::fdd(bdd_manager& manager, unsigned_vector&& vars)
: m_pos2var(std::move(vars))
, m_var2pos()
, m(&manager)
, m_var(manager.mk_var(m_pos2var))
{
for (unsigned pos = 0; pos < m_pos2var.size(); ++pos) {
unsigned const var = m_pos2var[pos];
while (var >= m_var2pos.size())
m_var2pos.push_back(UINT_MAX);
m_var2pos[var] = pos;
}
}
bdd fdd::non_zero() const {
bdd non_zero = m->mk_false();
for (unsigned var : m_pos2var) {
non_zero |= m->mk_var(var);
}
return non_zero;
}
unsigned fdd::var2pos(unsigned var) const {
return var < m_var2pos.size() ? m_var2pos[var] : UINT_MAX;
}
bool fdd::contains(bdd b, rational const& val) const {
while (!b.is_const()) {
unsigned const pos = var2pos(b.var());
SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
b = val.get_bit(pos) ? b.hi() : b.lo();
}
return b.is_true();
}
find_t fdd::find(bdd b, rational& out_val) const {
return find_hint(b, rational::zero(), out_val);
}
find_t fdd::find_hint(bdd b, rational const& hint, rational& out_val) const {
out_val = 0;
if (b.is_false())
return find_t::empty;
bool is_unique = true;
bool hint_ok = !hint.is_zero(); // since we choose the 'lo' branch by default, we don't need to check the hint when it is 0.
unsigned num_vars = 0;
while (!b.is_true()) {
++num_vars;
unsigned const pos = var2pos(b.var());
SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
bool go_hi = false;
if (b.lo().is_false()) {
go_hi = true;
if (hint_ok && !hint.get_bit(pos))
hint_ok = false;
}
else if (b.hi().is_false()) {
if (hint_ok && hint.get_bit(pos))
hint_ok = false;
}
else {
// This is the only case where we have a choice
// => follow the hint
SASSERT(!b.lo().is_false() && !b.hi().is_false());
is_unique = false;
if (hint_ok && hint.get_bit(pos))
go_hi = true;
}
if (go_hi) {
out_val += rational::power_of_two(pos);
b = b.hi();
}
else
b = b.lo();
}
if (num_vars != num_bits())
is_unique = false;
// If a variable corresponding to a 1-bit in hint does not appear in the BDD,
// out_val is wrong at this point, so we set it explicitly.
if (hint_ok)
out_val = hint;
// TODO: instead of computing out_val incrementally, we could mark the visited 'hi'-positions and only compute out_val from the marks when !hint_ok.
return is_unique ? find_t::singleton : find_t::multiple;
}
std::ostream& operator<<(std::ostream& out, find_t x) {
switch (x) {
case find_t::empty:
return out << "empty";
case find_t::singleton:
return out << "singleton";
case find_t::multiple:
return out << "multiple";
}
UNREACHABLE();
return out;
}
bool fdd::contains(bdd const& x, bool_vector const& value) const {
bdd b = x;
while (!b.is_true()) {
unsigned const pos = var2pos(b.var());
SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
if (value[pos] && b.hi().is_false())
return false;
if (!value[pos] && b.lo().is_false())
return false;
if (value[pos])
b = b.hi();
else
b = b.lo();
}
return true;
}
// subtract one from x
static void dec(bool_vector& x) {
for (auto& b : x) {
b = !b;
if (!b)
break;
}
}
// add one to x
static void inc(bool_vector& x) {
for (auto& b : x) {
b = !b;
if (b)
break;
}
}
static void reset(bool_vector& x, bool value) {
for (auto& b : x)
b = value;
}
bool fdd::sup(bdd const& x, bool_vector& lo) const {
SASSERT(lo.size() == num_bits());
//
// Assumption: common case is that high-order bits are before lower-order bits also
// after re-ordering. Then co-factoring is relatively cheap.
//
if (!contains(x, lo))
return false;
//
// find minimal index where b is false for some
// value larger than lo.
//
// Let ua(x lo) be shorthand for "unbounded-above" of variable
// x with bit-string lo.
//
// we have the following identities:
// ua(_ []) = true
// ua(x 1 ++ lo) = hi(x) = T or ua(hi(x), lo)
// ua(x 0 ++ lo) = hi(x) = T and ua(lo(x), lo)
//
// the least significant bit where ua is false
// represents the position where the smallest number above
// lo resides that violates x.
unsigned idx = UINT_MAX;
vector trail;
bdd b = x;
for (unsigned i = lo.size(); i-- > 0; ) {
trail.push_back(b);
unsigned v = m_pos2var[i];
bdd w = m->mk_var(v);
bdd hi = b.cofactor(w);
if (lo[i]) {
if (hi.is_true())
break;
SASSERT(!hi.is_false());
b = hi;
}
else {
if (!hi.is_true())
idx = i;
b = b.cofactor(m->mk_nvar(v));
}
}
if (idx == UINT_MAX) {
// all values above lo satisfy x
reset(lo, true);
return true;
}
SASSERT(!lo[idx]);
lo[idx] = true;
unsigned v = m_pos2var[idx];
b = trail[lo.size() - idx - 1].cofactor(m->mk_var(v));
for (unsigned i = idx; i-- > 0; ) {
SASSERT(!b.is_true());
if (b.is_false()) {
for (unsigned j = 0; j <= i; ++j)
lo[j] = false;
break;
}
lo[i] = b.lo().is_true();
if (lo[i])
b = b.hi();
else
b = b.lo();
}
dec(lo);
return true;
}
bool fdd::inf(bdd const& x, bool_vector& hi) const {
SASSERT(hi.size() == num_bits());
if (!contains(x, hi))
return false;
// Let ub(x hi) be shorthand for "unbounded-below" of variable
// x with bit-string hi.
//
// we have the following identities:
// ub(_ []) = true
// ub(x 0 ++ hi) = lo(x) = T or ub(lo(x), hi)
// ub(x 1 ++ hi) = lo(x) = T and ub(hi(x), hi)
//
unsigned idx = UINT_MAX;
vector trail;
bdd b = x;
for (unsigned i = hi.size(); i-- > 0; ) {
trail.push_back(b);
unsigned v = m_pos2var[i];
bdd nw = m->mk_nvar(v);
bdd lo = b.cofactor(nw);
if (!hi[i]) {
if (lo.is_true())
break;
SASSERT(!lo.is_false());
b = lo;
}
else {
if (!lo.is_true())
idx = i;
b = b.cofactor(m->mk_var(v));
}
}
if (idx == UINT_MAX) {
// all values below hi satisfy x
reset(hi, false);
return true;
}
SASSERT(hi[idx]);
hi[idx] = false;
unsigned v = m_pos2var[idx];
b = trail[hi.size() - idx - 1].cofactor(m->mk_nvar(v));
for (unsigned i = idx; i-- > 0; ) {
SASSERT(!b.is_true());
if (b.is_false()) {
for (unsigned j = 0; j <= i; ++j)
hi[j] = true;
break;
}
hi[i] = !b.hi().is_true();
if (!hi[i])
b = b.lo();
else
b = b.hi();
}
inc(hi);
return true;
}
bool_vector fdd::rational2bits(rational const& r) const {
bool_vector result;
for (unsigned i = 0; i < num_bits(); ++i)
result.push_back(r.get_bit(i));
return result;
}
rational fdd::bits2rational(bool_vector const& v) const {
rational result(0);
for (unsigned i = 0; i < num_bits(); ++i)
if (v[i])
result += rational::power_of_two(i);
return result;
}
bool fdd::sup(bdd const& b, rational& _lo) const {
bool_vector lo = rational2bits(_lo);
if (!sup(b, lo))
return false;
_lo = bits2rational(lo);
return true;
}
bool fdd::inf(bdd const& b, rational& _hi) const {
bool_vector hi = rational2bits(_hi);
if (!inf(b, hi))
return false;
_hi = bits2rational(hi);
return true;
}
rational fdd::max(bdd b) const {
SASSERT(!b.is_false());
rational result(0);
for (unsigned i = num_bits(); i-- > 0; ) {
unsigned v = m_pos2var[i];
bdd w = m->mk_var(v);
bdd hi = b.cofactor(w);
if (!hi.is_false()) {
b = hi;
result += rational::power_of_two(i);
}
}
return result;
}
rational fdd::min(bdd b) const {
SASSERT(!b.is_false());
rational result(0);
for (unsigned i = num_bits(); i-- > 0; ) {
unsigned v = m_pos2var[i];
bdd nw = m->mk_nvar(v);
bdd lo = b.cofactor(nw);
if (lo.is_false())
result += rational::power_of_two(i);
else
b = lo;
}
return result;
}
}