z3-z3-4.12.6.src.math.lp.nla_basics_lemmas.h Maven / Gradle / Ivy
/*++
Copyright (c) 2017 Microsoft Corporation
Author:
Lev Nachmanson (levnach)
Nikolaj Bjorner (nbjorner)
--*/
#pragma once
#include "math/lp/monic.h"
#include "math/lp/factorization.h"
#include "math/lp/nla_common.h"
namespace nla {
class core;
class new_lemma;
struct basics: common {
basics(core *core);
bool basic_sign_lemma_on_two_monics(const monic& m, const monic& n);
void basic_sign_lemma_model_based_one_mon(const monic& m, int product_sign);
bool basic_sign_lemma_model_based();
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set & explore);
/**
* \brief xy = 0
void basic_lemma_for_mon_non_zero_model_based_rm(const monic& rm, const factorization& f);
// x = 0 or y = 0 -> xy = 0
bool basic_lemma_for_mon_non_zero_derived(const monic& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
// bool basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const monic& m);
bool basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
template
bool can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const T&, lpvar&, rational&);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monic_derived(const monic& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const monic& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_derived(const monic& rm, const factorization& factorization);
void basic_lemma_for_mon_model_based(const monic& rm);
bool basic_lemma_for_mon_derived(const monic& rm);
// Use basic multiplication properties to create a lemma
// for the given monic.
// "derived" means derived from constraints - the alternative is model based
void basic_lemma_for_mon(const monic& rm, bool derived);
// use basic multiplication properties to create a lemma
bool basic_lemma(bool derived);
void generate_sign_lemma(const monic& m, const monic& n, const rational& sign);
void generate_zero_lemmas(const monic& m);
lpvar find_best_zero(const monic& m, unsigned_vector & fixed_zeros) const;
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
void get_non_strict_sign(lpvar j, int& sign) const;
void add_trivial_zero_lemma(lpvar zero_j, const monic& m);
void generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj);
void add_fixed_zero_lemma(const monic& m, lpvar j);
void negate_strict_sign(new_lemma& lemma, lpvar j);
// x != 0 or y = 0 => |xy| >= |y|
void proportion_lemma_model_based(const monic& rm, const factorization& factorization);
// if there are no zero factors then |m| >= |m[factor_index]|
void generate_pl_on_mon(const monic& m, unsigned factor_index);
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void generate_pl(const monic& rm, const factorization& fc, int factor_index);
bool is_separated_from_zero(const factorization&) const;
};
}