All Downloads are FREE. Search and download functionalities are using the official Maven repository.

z3-z3-4.12.6.src.sat.smt.array_solver.h Maven / Gradle / Ivy

There is a newer version: 4.13.0.1
Show newest version
/*++
Copyright (c) 2020 Microsoft Corporation

Module Name:

    array_solver.h

Abstract:

    Theory plugin for arrays

Author:

    Nikolaj Bjorner (nbjorner) 2020-09-08

--*/
#pragma once

#include "ast/ast_trail.h"
#include "sat/smt/sat_th.h"
#include "ast/array_decl_plugin.h"

namespace euf {
    class solver;
}

namespace array {

    class solver : public euf::th_euf_solver {
        typedef euf::theory_var theory_var;
        typedef euf::theory_id theory_id;
        typedef sat::literal literal;
        typedef sat::bool_var bool_var;
        typedef sat::literal_vector literal_vector;
        typedef union_find  array_union_find;


        struct stats {
            unsigned m_num_store_axiom, m_num_extensionality_axiom;
            unsigned m_num_eq_splits, m_num_congruence_axiom;
            unsigned m_num_select_store_axiom, m_num_select_as_array_axiom, m_num_select_map_axiom;
            unsigned m_num_select_const_axiom, m_num_select_store_axiom_delayed;
            unsigned m_num_default_store_axiom, m_num_default_map_axiom;
            unsigned m_num_default_const_axiom, m_num_default_as_array_axiom;
            unsigned m_num_select_lambda_axiom;
            void reset() { memset(this, 0, sizeof(*this)); }
            stats() { reset(); }
        };

        // void log_drat(array_justification const& c);

        struct var_data {
            bool                m_prop_upward = false ;
            bool                m_has_default = false;
            euf::enode_vector   m_lambdas;             // equivalent nodes that have beta reduction properties
            euf::enode_vector   m_parent_lambdas;      // parents that have beta reduction properties
            euf::enode_vector   m_parent_selects;      // parents that use array in select position
        };


        array_util        a;
        stats             m_stats;
        scoped_ptr_vector          m_var_data;
        ast2ast_trailmap          m_sort2epsilon;
        ast2ast_trailmap    m_sort2diag;
        obj_map m_sort2diff;
        array_union_find                     m_find;

        theory_var find(theory_var v) { return m_find.find(v); }
        theory_var find(euf::enode* n) { return find(n->get_th_var(get_id())); }
        func_decl_ref_vector const& sort2diff(sort* s);

        // internalize
        bool visit(expr* e) override;
        bool visited(expr* e) override;
        bool post_visit(expr* e, bool sign, bool root) override;
        void ensure_var(euf::enode* n);
        void internalize_eh(euf::enode* n);
        void internalize_lambda_eh(euf::enode* n);

        // axioms
        struct axiom_record {
            enum class kind_t {
                is_store,
                is_select,
                is_extensionality,
                is_default,
                is_congruence
            };
            enum class state_t {
                is_new,
                is_delayed,
                is_applied
            };
            kind_t      m_kind;
            state_t     m_state = state_t::is_new;
            euf::enode* n;
            euf::enode* select;
            axiom_record(kind_t k, euf::enode* n, euf::enode* select = nullptr) : m_kind(k), n(n), select(select) {}

            bool is_delayed() const { return m_state == state_t::is_delayed; }
            bool is_applied() const { return m_state == state_t::is_applied; }
            void set_new() { m_state = state_t::is_new; }
            void set_applied() { m_state = state_t::is_applied; }
            void set_delayed() { m_state = state_t::is_delayed; }

            struct hash {
                solver& s;
                hash(solver& s) :s(s) {}
                unsigned hash_select(axiom_record const& r) const {
                    unsigned h = mk_mix(r.n->get_expr_id(), (unsigned)r.m_kind, r.select->get_arg(1)->get_expr_id());
                    for (unsigned i = 2; i < r.select->num_args(); ++i)
                        h = mk_mix(h, h, r.select->get_arg(i)->get_expr_id());
                    return h;
                }
                unsigned operator()(unsigned idx) const {
                    auto const& r = s.m_axiom_trail[idx];
                    if (r.m_kind == kind_t::is_select) 
                        return hash_select(r);
                    return mk_mix(r.n->get_expr_id(), (unsigned)r.m_kind, r.select ? r.select->get_expr_id() : 1);
                }
            };

            struct eq {
                solver& s;
                eq(solver& s) :s(s) {}
                bool eq_select(axiom_record const& p, axiom_record const& r) const {
                    if (p.m_kind != r.m_kind || p.n != r.n)
                        return false;
                    for (unsigned i = p.select->num_args(); i-- > 1; )
                        if (p.select->get_arg(i) != r.select->get_arg(i))
                            return false;
                    return true;                    
                }
                unsigned operator()(unsigned a, unsigned b) const {
                    auto const& p = s.m_axiom_trail[a];
                    auto const& r = s.m_axiom_trail[b];
                    if (p.m_kind == kind_t::is_select)
                        return eq_select(p, r);
                    return p.m_kind == r.m_kind && p.n == r.n && p.select == r.select;
                }
            };
        };
        typedef hashtable axiom_table_t;
        axiom_record::hash    m_hash;
        axiom_record::eq      m_eq;
        axiom_table_t         m_axioms;
        svector m_axiom_trail;
        unsigned              m_qhead = 0;
        unsigned              m_delay_qhead = 0;
        bool                  m_enable_delay = true;
        struct reset_new;
        void push_axiom(axiom_record const& r);
        bool propagate_axiom(unsigned idx);
        bool assert_axiom(unsigned idx);
        bool assert_select(unsigned idx, axiom_record & r);
        bool assert_default(axiom_record & r);
        void set_applied(unsigned idx) { m_axiom_trail[idx].set_applied(); }
        bool is_applied(unsigned idx) const { return m_axiom_trail[idx].is_applied(); }
        bool is_delayed(unsigned idx) const { return m_axiom_trail[idx].is_delayed(); }

        axiom_record select_axiom(euf::enode* s, euf::enode* n) { return axiom_record(axiom_record::kind_t::is_select, n, s); }
        axiom_record default_axiom(euf::enode* n) { return axiom_record(axiom_record::kind_t::is_default, n); }
        axiom_record store_axiom(euf::enode* n) { return axiom_record(axiom_record::kind_t::is_store, n); }
        axiom_record extensionality_axiom(euf::enode* x, euf::enode* y) { return axiom_record(axiom_record::kind_t::is_extensionality, x, y); }
        axiom_record congruence_axiom(euf::enode* a, euf::enode* b) { return axiom_record(axiom_record::kind_t::is_congruence, a, b); }

        scoped_ptr m_constraint;

        sat::ext_justification_idx array_axiom() { return m_constraint->to_index(); }

        bool assert_store_axiom(app* _e);
        bool assert_select_store_axiom(app* select, app* store);
        bool assert_select_const_axiom(app* select, app* cnst);
        bool assert_select_as_array_axiom(app* select, app* arr);
        bool assert_select_map_axiom(app* select, app* map);
        bool assert_select_lambda_axiom(app* select, expr* lambda);
        bool assert_extensionality(expr* e1, expr* e2);
        bool assert_default_map_axiom(app* map);
        bool assert_default_const_axiom(app* cnst);
        bool assert_default_store_axiom(app* store);
        bool assert_congruent_axiom(expr* e1, expr* e2);
        bool add_delayed_axioms();
        bool add_as_array_eqs(euf::enode* n);
        expr_ref apply_map(app* map, unsigned n, expr* const* args);
        bool is_map_combinator(expr* e) const;

        bool has_unitary_domain(app* array_term);
        bool has_large_domain(expr* array_term);
        std::pair mk_epsilon(sort* s);
        void collect_shared_vars(sbuffer& roots);
        bool add_interface_equalities();
        bool is_shared_arg(euf::enode* r);
        bool is_array(euf::enode* n) const { return a.is_array(n->get_expr()); }

        // solving          
        void add_parent_select(theory_var v_child, euf::enode* select);
        void add_parent_default(theory_var v_child);
        void add_lambda(theory_var v, euf::enode* lambda);        
        void add_parent_lambda(theory_var v_child, euf::enode* lambda);

        void propagate_select_axioms(var_data const& d, euf::enode* a);
        void propagate_parent_select_axioms(theory_var v);
        void propagate_parent_default(theory_var v);        

        void set_prop_upward(theory_var v);
        void set_prop_upward(var_data& d);
        void set_prop_upward_store(euf::enode* n);
        unsigned get_lambda_equiv_size(var_data const& d) const;
        bool should_set_prop_upward(var_data const& d) const;
        bool should_prop_upward(var_data const& d) const;
        bool can_beta_reduce(euf::enode* n) const { return can_beta_reduce(n->get_expr()); }
        bool can_beta_reduce(expr* e) const;
        bool check_lambdas();

        var_data& get_var_data(euf::enode* n) { return get_var_data(n->get_th_var(get_id())); }
        var_data& get_var_data(theory_var v) { return *m_var_data[v]; }
        var_data const& get_var_data(theory_var v) const { return *m_var_data[v]; }

        void pop_core(unsigned n) override;
        
        // models
        // I need a set of select enodes where select(A,i) = select(B,j) if i->get_root() == j->get_root()
        struct sel_khasher {
            unsigned operator()(euf::enode const * n) const { return 0; }
        };

        struct sel_chasher {
            unsigned operator()(euf::enode const * n, unsigned idx) const { 
                return n->get_arg(idx+1)->get_root()->hash();
            }
        };
        
        struct sel_hash {
            unsigned operator()(euf::enode * n) const;
        };

        struct sel_eq {
            bool operator()(euf::enode * n1, euf::enode * n2) const;
        };
        
        typedef ptr_hashtable select_set;
        euf::enode_vector   m_defaults;       // temporary field for model construction
        ptr_vector    m_else_values;    // 
        svector        m_parents;        // temporary field for model construction
        obj_map  m_selects;        // mapping from array -> relevant selects
        ptr_vector            m_selects_domain; 
        ptr_vector            m_selects_range;

        bool must_have_different_model_values(theory_var v1, theory_var v2);
        select_set* get_select_set(euf::enode* n);
        void collect_defaults();
        void collect_selects();               // mapping from array -> relevant selects
        void propagate_select_to_store_parents(euf::enode* r, euf::enode* sel, euf::enode_pair_vector& todo);

        void mg_merge(theory_var u, theory_var v);
        theory_var mg_find(theory_var n);
        void set_default(theory_var v, euf::enode* n);
        euf::enode* get_default(theory_var v);
        void set_else(theory_var v, expr* e);
        expr* get_else(theory_var v);

        // diagnostics
        std::ostream& display_info(std::ostream& out, char const* id, euf::enode_vector const& v) const; 
        std::ostream& display(std::ostream& out, axiom_record const& r) const;
        void validate_check() const;
        void validate_select_store(euf::enode* n) const;
        void validate_extensionality(euf::enode* s, euf::enode* t) const;
    public:
        solver(euf::solver& ctx, theory_id id);
        ~solver() override;
        bool is_external(bool_var v) override { return false; }
        void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) override {}
        void asserted(literal l) override {}
        sat::check_result check() override;

        std::ostream& display(std::ostream& out) const override;
        std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
        std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
        void collect_statistics(statistics& st) const override;
        euf::th_solver* clone(euf::solver& ctx) override;
        void new_eq_eh(euf::th_eq const& eq) override;
        bool use_diseqs() const override { return true; }
        void new_diseq_eh(euf::th_eq const& eq) override;
        bool unit_propagate() override;
        void init_model() override;
        void finalize_model(model& mdl) override;
        bool include_func_interp(func_decl* f) const override { return a.is_ext(f); }
        void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override;
        bool add_dep(euf::enode* n, top_sort& dep) override;
        sat::literal internalize(expr* e, bool sign, bool root) override;
        void internalize(expr* e) override;
        euf::theory_var mk_var(euf::enode* n) override;
        void apply_sort_cnstr(euf::enode* n, sort* s) override;
        bool is_shared(theory_var v) const override;
        bool is_beta_redex(euf::enode* p, euf::enode* n) const override;
        bool enable_self_propagate() const override { return true; }
        void relevant_eh(euf::enode* n) override;
        bool enable_ackerman_axioms(euf::enode* n) const override { return !a.is_array(n->get_sort()); }
 
        void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2);
        void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {}
        void unmerge_eh(theory_var v1, theory_var v2) {}

        euf::enode_vector const& parent_selects(euf::enode* n) { return m_var_data[find(n->get_th_var(get_id()))]->m_parent_selects; }
    };
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy