z3-z3-4.12.6.src.sat.smt.recfun_solver.h Maven / Gradle / Ivy
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
recfun_solver.h
Abstract:
Recursive function solver plugin
Author:
Simon Cruanes December 2017
Nikolaj Bjorner (nbjorner) 2021-02-09
--*/
#pragma once
#include "ast/recfun_decl_plugin.h"
#include "ast/ast_trail.h"
#include "sat/smt/sat_th.h"
namespace euf {
class solver;
}
namespace recfun {
class solver : public euf::th_euf_solver {
struct stats {
unsigned m_case_expansions, m_body_expansions, m_macro_expansions;
void reset() { memset(this, 0, sizeof(stats)); }
stats() { reset(); }
};
recfun::decl::plugin& m_plugin;
recfun::util& m_util;
stats m_stats;
// book-keeping for depth of predicates
expr_ref_vector m_disabled_guards;
expr_ref_vector m_enabled_guards;
obj_map m_guard2pending;
obj_map m_pred_depth;
expr_ref_vector m_preds;
unsigned_vector m_preds_lim;
unsigned m_num_rounds { 0 };
scoped_ptr_vector m_propagation_queue;
unsigned m_qhead { 0 };
void push_body_expand(expr* e) { push_prop(alloc(propagation_item, alloc(body_expansion, u(), to_app(e)))); }
void push_case_expand(expr* e) { push_prop(alloc(propagation_item, alloc(case_expansion, u(), to_app(e)))); }
void push_guard(expr* e) { push_prop(alloc(propagation_item, e)); }
void push_c(expr_ref_vector const& core) { push_prop(alloc(propagation_item, core)); }
void push_prop(propagation_item* p);
bool is_enabled_guard(expr* guard) { return m_enabled_guards.contains(guard); }
bool is_disabled_guard(expr* guard) { return m_disabled_guards.contains(guard); }
recfun::util & u() const { return m_util; }
bool is_defined(expr * f) const { return u().is_defined(f); }
bool is_case_pred(expr * f) const { return u().is_case_pred(f); }
bool is_defined(euf::enode * e) const { return is_defined(e->get_expr()); }
bool is_case_pred(euf::enode * e) const { return is_case_pred(e->get_expr()); }
expr_ref apply_args(vars const & vars, expr_ref_vector const & args, expr * e);
void assert_macro_axiom(case_expansion & e);
void assert_case_axioms(case_expansion & e);
void assert_body_axiom(body_expansion & e);
void assert_guard(expr* guard, expr_ref_vector const& guards);
void block_core(expr_ref_vector const& core);
void disable_guard(expr* guard, expr_ref_vector const& guards);
bool is_standard_order(recfun::vars const& vars) const {
return vars.empty() || vars[vars.size()-1]->get_idx() == 0;
}
void reset();
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
public:
solver(euf::solver& ctx);
~solver() override;
bool is_external(sat::bool_var v) override { return false; }
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) override;
void asserted(sat::literal l) override;
sat::check_result check() override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override { return display_constraint(out, idx); }
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override { return out; }
void collect_statistics(statistics& st) const override;
euf::th_solver* clone(euf::solver& ctx) override;
bool unit_propagate() override;
sat::literal internalize(expr* e, bool sign, bool root) override;
void internalize(expr* e) override;
bool add_dep(euf::enode* n, top_sort& dep) override;
void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override;
bool is_shared(euf::theory_var v) const override { return true; }
void init_search() override {}
bool should_research(sat::literal_vector const& core) override;
bool is_beta_redex(euf::enode* p, euf::enode* n) const override;
void add_assumptions(sat::literal_set& assumptions) override;
bool tracking_assumptions() override { return true; }
};
}