Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.smt.theory_recfun.cpp Maven / Gradle / Ivy
/*++
Copyright (c) 2018 Microsoft Corporation, Simon Cruanes
Module Name:
theory_recfun.cpp
Abstract:
Theory responsible for unrolling recursive functions
Author:
Simon Cruanes December 2017
Revision History:
--*/
#include "util/stats.h"
#include "ast/ast_util.h"
#include "ast/ast_ll_pp.h"
#include "ast/for_each_expr.h"
#include "smt/theory_recfun.h"
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
namespace smt {
theory_recfun::theory_recfun(context& ctx)
: theory(ctx, ctx.get_manager().mk_family_id("recfun")),
m_plugin(*reinterpret_cast(m.get_plugin(get_family_id()))),
m_util(m_plugin.u()),
m_disabled_guards(m),
m_enabled_guards(m),
m_preds(m) {
}
theory_recfun::~theory_recfun() {
reset_eh();
}
char const * theory_recfun::get_name() const { return "recfun"; }
theory* theory_recfun::mk_fresh(context* new_ctx) {
return alloc(theory_recfun, *new_ctx);
}
bool theory_recfun::internalize_atom(app * atom, bool gate_ctx) {
TRACE("recfun", tout << mk_pp(atom, m) << " " << u().has_defs() << "\n");
if (!u().has_defs()) {
// if (u().is_defined(atom))
// throw default_exception("recursive atom definition is out of scope");
return false;
}
for (expr * arg : *atom)
ctx.internalize(arg, false);
if (!ctx.e_internalized(atom))
ctx.mk_enode(atom, false, true, true);
if (!ctx.b_internalized(atom))
ctx.set_var_theory(ctx.mk_bool_var(atom), get_id());
if (!ctx.relevancy() && u().is_defined(atom))
push_case_expand(atom);
return true;
}
bool theory_recfun::internalize_term(app * term) {
if (!u().has_defs()) {
// if (u().is_defined(term))
// throw default_exception("recursive term definition is out of scope");
return false;
}
for (expr* e : *term) {
ctx.internalize(e, false);
}
if (!ctx.e_internalized(term)) {
ctx.mk_enode(term, false, false, true);
}
if (!ctx.relevancy() && u().is_defined(term)) {
push_case_expand(term);
}
return true;
}
void theory_recfun::reset_eh() {
m_stats.reset();
theory::reset_eh();
m_disabled_guards.reset();
m_enabled_guards.reset();
for (auto & kv : m_guard2pending)
dealloc(kv.m_value);
m_guard2pending.reset();
}
/*
* when `n` becomes relevant, if it's `f(t1...tn)` with `f` defined,
* then case-expand `n`. If it's a macro we can also immediately
* body-expand it.
*/
void theory_recfun::relevant_eh(app * n) {
SASSERT(ctx.relevancy());
// TRACEFN("relevant_eh: (defined) " << u().is_defined(n) << " " << mk_pp(n, m));
if (u().is_defined(n) && u().has_defs())
push_case_expand(n);
}
void theory_recfun::push_scope_eh() {
theory::push_scope_eh();
m_preds_lim.push_back(m_preds.size());
}
void theory_recfun::pop_scope_eh(unsigned num_scopes) {
theory::pop_scope_eh(num_scopes);
// restore depth book-keeping
unsigned new_lim = m_preds_lim.size()-num_scopes;
#if 0
// depth tracking of recursive unfolding is
// turned off when enabling this code:
unsigned start = m_preds_lim[new_lim];
for (unsigned i = start; i < m_preds.size(); ++i) {
m_pred_depth.remove(m_preds.get(i));
}
m_preds.resize(start);
#endif
m_preds_lim.shrink(new_lim);
}
bool theory_recfun::can_propagate() {
return m_qhead < m_propagation_queue.size();
}
void theory_recfun::propagate() {
if (m_qhead == m_propagation_queue.size())
return;
ctx.push_trail(value_trail(m_qhead));
for (; m_qhead < m_propagation_queue.size() && !ctx.inconsistent(); ++m_qhead) {
auto& p = *m_propagation_queue[m_qhead];
if (p.is_guard())
activate_guard(p.guard(), *m_guard2pending[p.guard()]);
else if (p.is_core())
block_core(p.core());
else if (p.is_case())
assert_case_axioms(p.case_ex());
else
assert_body_axiom(p.body());
}
}
void theory_recfun::push(propagation_item* p) {
m_propagation_queue.push_back(p);
ctx.push_trail(push_back_vector>(m_propagation_queue));
}
/**
* make clause `depth_limit => ~guard`
* the guard appears at a depth below the current cutoff.
*/
void theory_recfun::disable_guard(expr* guard, expr_ref_vector const& guards) {
SASSERT(!is_enabled_guard(guard));
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
expr_ref_vector core(m);
core.push_back(dlimit);
core.push_back(guard);
if (!m_guard2pending.contains(guard)) {
m_disabled_guards.push_back(guard);
m_guard2pending.insert(guard, alloc(expr_ref_vector, guards));
}
TRACEFN("add core: " << core);
push_core(core);
}
/**
* retrieve depth associated with predicate or expression.
*/
unsigned theory_recfun::get_depth(expr* e) {
SASSERT(u().is_defined(e) || u().is_case_pred(e));
unsigned d = 0;
m_pred_depth.find(e, d);
return d;
}
/**
* Update depth of subterms of e with respect to d.
*/
void theory_recfun::set_depth_rec(unsigned d, expr* e) {
struct insert_c {
theory_recfun& th;
unsigned m_depth;
insert_c(theory_recfun& th, unsigned d): th(th), m_depth(d) {}
void operator()(app* e) { th.set_depth(m_depth, e); }
void operator()(quantifier*) {}
void operator()(var*) {}
};
insert_c proc(*this, d);
for_each_expr(proc, e);
}
void theory_recfun::set_depth(unsigned depth, expr* e) {
if ((u().is_defined(e) || u().is_case_pred(e)) && !m_pred_depth.contains(e)) {
m_pred_depth.insert(e, depth);
m_preds.push_back(e);
}
}
/**
* if `is_true` and `v = C_f_i(t1...tn)`,
* then body-expand i-th case of `f(t1...tn)`
*/
void theory_recfun::assign_eh(bool_var v, bool is_true) {
expr* e = ctx.bool_var2expr(v);
if (is_true && u().is_case_pred(e)) {
TRACEFN("assign_case_pred_true " << v << " " << mk_pp(e, m));
// body-expand
push_body_expand(e);
}
}
// replace `vars` by `args` in `e`
expr_ref theory_recfun::apply_args(
unsigned depth,
recfun::vars const & vars,
expr_ref_vector const & args,
expr * e) {
SASSERT(is_standard_order(vars));
var_subst subst(m, true);
expr_ref new_body = subst(e, args);
ctx.get_rewriter()(new_body); // simplify
set_depth_rec(depth + 1, new_body);
return new_body;
}
literal theory_recfun::mk_literal(expr* e) {
bool is_not = m.is_not(e, e);
ctx.internalize(e, false);
literal lit = ctx.get_literal(e);
ctx.mark_as_relevant(lit);
if (is_not)
lit.neg();
return lit;
}
literal theory_recfun::mk_eq_lit(expr* l, expr* r) {
literal lit;
if (has_quantifiers(l) || has_quantifiers(r)) {
expr_ref eq1(m.mk_eq(l, r), m);
expr_ref fn(m.mk_fresh_const("rec-eq", m.mk_bool_sort()), m);
expr_ref eq(m.mk_eq(fn, eq1), m);
ctx.add_asserted(eq);
ctx.internalize_assertions();
lit = mk_literal(fn);
}
else {
if (m.is_true(r) || m.is_false(r))
std::swap(l, r);
if (m.is_true(l))
lit = mk_literal(r);
else if (m.is_false(l))
lit = ~mk_literal(r);
else
lit = mk_eq(l, r, false);
}
ctx.mark_as_relevant(lit);
return lit;
}
void theory_recfun::block_core(expr_ref_vector const& core) {
literal_vector clause;
for (expr* e : core)
clause.push_back(~mk_literal(e));
ctx.mk_th_axiom(get_id(), clause);
}
/**
* For functions f(args) that are given as macros f(vs) = rhs
*
* 1. substitute `e.args` for `vs` into the macro rhs
* 2. add unit clause `f(args) = rhs`
*/
void theory_recfun::assert_macro_axiom(recfun::case_expansion & e) {
m_stats.m_macro_expansions++;
TRACEFN("case expansion " << e);
SASSERT(e.m_def->is_fun_macro());
auto & vars = e.m_def->get_vars();
expr_ref lhs(e.m_lhs, m);
unsigned depth = get_depth(e.m_lhs);
expr_ref rhs(apply_args(depth, vars, e.m_args, e.m_def->get_rhs()), m);
literal lit = mk_eq_lit(lhs, rhs);
std::function fn = [&]() { return lit; };
scoped_trace_stream _tr(*this, fn);
ctx.mk_th_axiom(get_id(), 1, &lit);
TRACEFN("macro expansion yields " << pp_lit(ctx, lit));
}
/**
* Add case axioms for every case expansion path.
*
* assert `p(args) <=> And(guards)` (with CNF on the fly)
*
* also body-expand paths that do not depend on any defined fun
*/
void theory_recfun::assert_case_axioms(recfun::case_expansion & e) {
if (e.m_def->is_fun_macro()) {
assert_macro_axiom(e);
return;
}
++m_stats.m_case_expansions;
TRACEFN("assert_case_axioms " << e
<< " with " << e.m_def->get_cases().size() << " cases");
SASSERT(e.m_def->is_fun_defined());
// add case-axioms for all case-paths
// assert this was not defined before.
literal_vector preds;
auto & vars = e.m_def->get_vars();
for (recfun::case_def const & c : e.m_def->get_cases()) {
// applied predicate to `args`
app_ref pred_applied = c.apply_case_predicate(e.m_args);
SASSERT(u().owns_app(pred_applied));
literal concl = mk_literal(pred_applied);
preds.push_back(concl);
unsigned depth = get_depth(e.m_lhs);
set_depth(depth, pred_applied);
expr_ref_vector guards(m);
for (auto & g : c.get_guards()) {
guards.push_back(apply_args(depth, vars, e.m_args, g));
}
if (c.is_immediate()) {
recfun::body_expansion be(pred_applied, c, e.m_args);
assert_body_axiom(be);
}
else if (!is_enabled_guard(pred_applied)) {
disable_guard(pred_applied, guards);
continue;
}
activate_guard(pred_applied, guards);
}
TRACEFN("assert core " << preds);
// the disjunction of branches is asserted
// to close the available cases.
scoped_trace_stream _tr(*this, preds);
ctx.mk_th_axiom(get_id(), preds);
}
void theory_recfun::activate_guard(expr* pred_applied, expr_ref_vector const& guards) {
literal concl = mk_literal(pred_applied);
literal_vector lguards;
lguards.push_back(concl);
for (expr* ga : guards) {
literal guard = mk_literal(ga);
lguards.push_back(~guard);
scoped_trace_stream _tr1(*this, ~concl, guard);
ctx.mk_th_axiom(get_id(), ~concl, guard);
}
scoped_trace_stream _tr2(*this, lguards);
ctx.mk_th_axiom(get_id(), lguards);
}
/**
* For a guarded definition guards => f(vars) = rhs
* and occurrence f(args)
*
* substitute `args` for `vars` in guards, and rhs
* add axiom guards[args/vars] => f(args) = rhs[args/vars]
*
*/
void theory_recfun::assert_body_axiom(recfun::body_expansion & e) {
++m_stats.m_body_expansions;
recfun::def & d = *e.m_cdef->get_def();
auto & vars = d.get_vars();
auto & args = e.m_args;
SASSERT(is_standard_order(vars));
unsigned depth = get_depth(e.m_pred);
expr_ref lhs(u().mk_fun_defined(d, args), m);
expr_ref rhs = apply_args(depth, vars, args, e.m_cdef->get_rhs());
if (has_quantifiers(rhs)) {
expr_ref fn(m.mk_fresh_const("rec-eq", m.mk_bool_sort()), m);
expr_ref eq(m.mk_eq(fn, rhs), m);
ctx.assert_expr(eq);
ctx.internalize_assertions();
rhs = fn;
}
literal_vector clause;
for (auto & g : e.m_cdef->get_guards()) {
expr_ref guard = apply_args(depth, vars, args, g);
clause.push_back(~mk_literal(guard));
if (clause.back() == true_literal) {
TRACEFN("body " << e << "\n" << clause << "\n" << guard);
return;
}
if (clause.back() == false_literal) {
clause.pop_back();
}
}
clause.push_back(mk_eq_lit(lhs, rhs));
TRACEFN(e << "\n" << pp_lits(ctx, clause));
std::function fn = [&]() { return clause; };
scoped_trace_stream _tr(*this, fn);
ctx.mk_th_axiom(get_id(), clause);
}
final_check_status theory_recfun::final_check_eh() {
if (can_propagate()) {
TRACEFN("final\n");
propagate();
return FC_CONTINUE;
}
return FC_DONE;
}
void theory_recfun::add_theory_assumptions(expr_ref_vector & assumptions) {
if (u().has_rec_defs() || !m_disabled_guards.empty()) {
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
TRACEFN("add_theory_assumption " << dlimit);
assumptions.push_back(dlimit);
for (expr* e : m_disabled_guards)
assumptions.push_back(m.mk_not(e));
}
}
// if `dlimit` or a disabled guard occurs in unsat core, return 'true'
bool theory_recfun::should_research(expr_ref_vector & unsat_core) {
bool found = false;
expr* to_delete = nullptr;
unsigned n = 0;
unsigned current_depth = UINT_MAX;
for (auto * ne : unsat_core) {
expr* e = nullptr;
if (m.is_not(ne, e) && is_disabled_guard(e)) {
found = true;
unsigned depth = get_depth(e);
if (depth < current_depth)
n = 0;
if (depth <= current_depth && (ctx.get_random_value() % (++n)) == 0) {
to_delete = e;
current_depth = depth;
}
}
else if (u().is_num_rounds(ne))
found = true;
}
if (found) {
m_num_rounds++;
if (!to_delete && !m_disabled_guards.empty())
to_delete = m_disabled_guards.back();
if (to_delete) {
m_disabled_guards.erase(to_delete);
m_enabled_guards.push_back(to_delete);
IF_VERBOSE(2, verbose_stream() << "(smt.recfun :enable-guard " << mk_pp(to_delete, m) << ")\n");
}
else {
IF_VERBOSE(2, verbose_stream() << "(smt.recfun :increment-round " << m_num_rounds << ")\n");
}
for (expr* g : m_enabled_guards)
push_guard(g);
}
TRACEFN("should research " << found);
return found;
}
/**
* n is an argument of p, if p is a function definition or case predicate,
* then there is no reason for the solver to enforce that equality on n is
* fully determined. It is a beta-redex with respect to expanding p.
*/
bool theory_recfun::is_beta_redex(enode* p, enode* n) const {
return is_defined(p) || is_case_pred(p);
}
void theory_recfun::display(std::ostream & out) const {
out << "recfun\n";
out << "disabled guards:\n" << m_disabled_guards << "\n";
out << "enabled guards:\n" << m_enabled_guards << "\n";
}
void theory_recfun::collect_statistics(::statistics & st) const {
st.update("recfun macro expansion", m_stats.m_macro_expansions);
st.update("recfun case expansion", m_stats.m_case_expansions);
st.update("recfun body expansion", m_stats.m_body_expansions);
}
}