Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.util.f2n.h Maven / Gradle / Ivy
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
f2n.h
Abstract:
Template for wrapping a float-like API as a numeral-like API.
The basic idea is to have the rounding mode as an implicit argument.
Author:
Leonardo de Moura (leonardo) 2012-07-30.
Revision History:
--*/
#pragma once
#include "util/mpf.h"
template
class f2n {
public:
typedef typename fmanager::numeral numeral;
struct exception {};
private:
fmanager & m_manager;
mpf_rounding_mode m_mode;
unsigned m_ebits;
unsigned m_sbits;
numeral m_tmp1;
numeral m_one;
void check(numeral const & n) { if (!m().is_regular(n)) throw exception(); }
public:
static bool field() { return true; }
static bool precise() { return false; }
f2n(fmanager & m, unsigned ebits = 11, unsigned sbits = 53):m_manager(m), m_mode(MPF_ROUND_TOWARD_POSITIVE), m_ebits(ebits), m_sbits(sbits) {
m_manager.set(m_one, ebits, sbits, 1);
}
f2n(f2n && other) noexcept : m_manager(other.m_manager), m_mode(other.m_mode), m_ebits(other.m_ebits), m_sbits(other.m_sbits),
m_tmp1(std::move(other.m_tmp1)), m_one(std::move(other.m_one)) {}
~f2n() {
m().del(m_tmp1);
m().del(m_one);
}
void set_rounding_mode(mpf_rounding_mode m) { m_mode = m; }
mpf_rounding_mode rounding_mode() const { return m_mode; }
void round_to_plus_inf() { m_mode = MPF_ROUND_TOWARD_POSITIVE; }
void round_to_minus_inf() { m_mode = MPF_ROUND_TOWARD_NEGATIVE; }
void set_rounding(bool to_plus_inf) { if (to_plus_inf) round_to_plus_inf(); else round_to_minus_inf(); }
unsigned ebits() const { return m_ebits; }
unsigned sbits() const { return m_sbits; }
fmanager & m() const { return m_manager; }
double to_double(numeral & x) const { return m().to_double(x); }
void del(numeral & x) { m().del(x); }
void abs(numeral & o) { m().abs(o); }
void abs(numeral const & x, numeral & o) { m().abs(x, o); }
void neg(numeral & o) { m().neg(o); }
void neg(numeral const & x, numeral & o) { m().neg(x, o); }
bool is_zero(numeral const & x) { return m().is_zero(x); }
bool is_neg(numeral const & x) { return m().is_neg(x) && !m().is_zero(x); /* it is not clear whether actual hardware returns true for is_neg(0-) */ }
bool is_pos(numeral const & x) { return m().is_pos(x) && !m().is_zero(x); }
bool is_nonneg(numeral const & x) { return !is_neg(x); }
bool is_nonpos(numeral const & x) { return !is_pos(x); }
void set(numeral & o, int value) { m().set(o, m_ebits, m_sbits, value); check(o); }
void set(numeral & o, int n, int d) { m().set(o, m_ebits, m_sbits, m_mode, n, d); check(o); }
void set(numeral & o, double x) { m().set(o, m_ebits, m_sbits, x); check(o); }
void set(numeral & o, unsigned value) { m().set(o, m_ebits, m_sbits, (double)value); check(o); }
void set(numeral & o, numeral const & x) { m().set(o, x); check(o); }
void set(numeral & o, mpq const & x) { m().set(o, m_ebits, m_sbits, m_mode, x); check(o); }
void reset(numeral & o) { m().reset(o, m_ebits, m_sbits); }
static void swap(numeral & x, numeral & y) noexcept { x.swap(y); }
void add(numeral const & x, numeral const & y, numeral & o) { m().add(m_mode, x, y, o); check(o); }
void sub(numeral const & x, numeral const & y, numeral & o) { m().sub(m_mode, x, y, o); check(o); }
void mul(numeral const & x, numeral const & y, numeral & o) { m().mul(m_mode, x, y, o); check(o); }
void div(numeral const & x, numeral const & y, numeral & o) { m().div(m_mode, x, y, o); check(o); }
void inv(numeral & o) { numeral a; set(a, 1); div(a, o, o); del(a); check(o); }
void inv(numeral const & x, numeral & o) { set(o, x); inv(o); }
void inc(numeral & x) { add(x, m_one, x); }
void dec(numeral & x) { sub(x, m_one, x); }
void power(numeral const & a, unsigned p, numeral & b) {
unsigned mask = 1;
numeral power;
set(power, a);
set(b, 1);
while (mask <= p) {
if (mask & p)
mul(b, power, b);
mul(power, power, power);
mask = mask << 1;
}
del(power);
check(b);
}
// Store the floor of a into b. Return true if a is an integer.
// Throws an exception if the result cannot be computed precisely.
void floor(numeral const & a, numeral & b) {
SASSERT(m().is_regular(a));
// Claim: If a is a regular float, then floor(a) is an integer that can be precisely represented.
// Justification: (for the case a is nonnegative)
// If 0 <= a > 2^sbits(), then a is an integer, and floor(a) == a
// If 0 <= a <= 2^sbits(), then floor(a) is representable since every integer less than 2^sbit
m().round_to_integral(MPF_ROUND_TOWARD_NEGATIVE, a, m_tmp1);
SASSERT(m().is_regular(m_tmp1));
if (m().le(m_tmp1, a)) {
m().set(b, m_tmp1);
}
else {
// the rounding mode doesn't matter for the following operation.
m().sub(MPF_ROUND_TOWARD_NEGATIVE, m_tmp1, m_one, b);
}
SASSERT(m().is_regular(b));
}
void ceil(numeral const & a, numeral & b) {
SASSERT(m().is_regular(a));
// See comment in floor
m().round_to_integral(MPF_ROUND_TOWARD_POSITIVE, a, m_tmp1);
SASSERT(m().is_regular(m_tmp1));
if (m().ge(m_tmp1, a)) {
m().set(b, m_tmp1);
}
else {
// the rounding mode doesn't matter for the following operation.
m().add(MPF_ROUND_TOWARD_NEGATIVE, m_tmp1, m_one, b);
}
SASSERT(m().is_regular(b));
}
unsigned prev_power_of_two(numeral const & a) { return m().prev_power_of_two(a); }
bool eq(numeral const & x, numeral const & y) { return m().eq(x, y); }
bool lt(numeral const & x, numeral const & y) { return m().lt(x, y); }
bool le(numeral const & x, numeral const & y) { return m().le(x, y); }
bool gt(numeral const & x, numeral const & y) { return m().gt(x, y); }
bool ge(numeral const & x, numeral const & y) { return m().ge(x, y); }
bool is_int(numeral const & x) { return m().is_int(x); }
bool is_one(numeral const & x) { return m().is_one(x); }
bool is_minus_one(numeral const & x) { numeral & _x = const_cast(x); m().neg(_x); bool r = m().is_one(_x); m().neg(_x); return r; }
std::string to_string(numeral const & a) { return m().to_string(a); }
std::string to_rational_string(numeral const & a) { return m().to_rational_string(a); }
void display(std::ostream & out, numeral const & a) { out << to_string(a); }
void display_decimal(std::ostream & out, numeral const & a, unsigned k) { m().display_decimal(out, a, k); }
void display_smt2(std::ostream & out, numeral const & a, bool decimal) { m().display_smt2(out, a, decimal); }
};