Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.util.mpzzp.h Maven / Gradle / Ivy
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
mpzzp.h
Abstract:
Combines Z ring, GF(p) finite field, and Z_p ring (when p is not a prime)
in a single manager;
That is, the manager may be dynamically configured
to be Z Ring, GF(p), etc.
Author:
Leonardo 2012-01-17.
Revision History:
This code is based on mpzp.h.
In the future, it will replace it.
--*/
#pragma once
#include "util/mpz.h"
class mpzzp_manager {
typedef unsynch_mpz_manager numeral_manager;
numeral_manager & m_manager;
bool m_z;
// instead the usual [0..p) we will keep the numbers in [lower, upper]
mpz m_p, m_lower, m_upper;
bool m_p_prime;
mpz m_inv_tmp1, m_inv_tmp2, m_inv_tmp3;
mpz m_div_tmp;
bool is_p_normalized_core(mpz const & x) const {
return m().ge(x, m_lower) && m().le(x, m_upper);
}
void setup_p() {
SASSERT(m().is_pos(m_p) && !m().is_one(m_p));
bool even = m().is_even(m_p);
m().div(m_p, 2, m_upper);
m().set(m_lower, m_upper);
m().neg(m_lower);
if (even) {
m().inc(m_lower);
}
TRACE("mpzzp", tout << "lower: " << m_manager.to_string(m_lower) << ", upper: " << m_manager.to_string(m_upper) << "\n";);
}
void p_normalize_core(mpz & x) {
SASSERT(!m_z);
m().rem(x, m_p, x);
if (m().gt(x, m_upper)) {
m().sub(x, m_p, x);
} else {
if (m().lt(x, m_lower)) {
m().add(x, m_p, x);
}
}
SASSERT(is_p_normalized(x));
}
public:
typedef mpz numeral;
static bool precise() { return true; }
bool field() { return !m_z && m_p_prime; }
bool finite() const { return !m_z; }
bool modular() const { return !m_z; }
mpzzp_manager(numeral_manager & _m):
m_manager(_m),
m_z(true) {
}
mpzzp_manager(numeral_manager & _m, mpz const & p, bool prime = true):
m_manager(_m),
m_z(false) {
m().set(m_p, p);
setup_p();
}
mpzzp_manager(numeral_manager & _m, uint64_t p, bool prime = true):
m_manager(_m),
m_z(false) {
m().set(m_p, p);
setup_p();
}
~mpzzp_manager() {
m().del(m_p);
m().del(m_lower);
m().del(m_upper);
m().del(m_inv_tmp1);
m().del(m_inv_tmp2);
m().del(m_inv_tmp3);
m().del(m_div_tmp);
}
bool is_p_normalized(mpz const & x) const {
return m_z || is_p_normalized_core(x);
}
void p_normalize(mpz & x) {
if (!m_z)
p_normalize_core(x);
SASSERT(is_p_normalized(x));
}
numeral_manager & m() const { return m_manager; }
mpz const & p() const { return m_p; }
void set_z() { m_z = true; }
void set_zp(mpz const & new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); }
void set_zp(uint64_t new_p) { m_z = false; m_p_prime = true; m().set(m_p, new_p); setup_p(); }
// p = p^2
void set_p_sq() { SASSERT(!m_z); m_p_prime = false; m().mul(m_p, m_p, m_p); setup_p(); }
void set_zp_swap(mpz & new_p) { SASSERT(!m_z); m().swap(m_p, new_p); setup_p(); }
void reset(mpz & a) { m().reset(a); }
bool is_small(mpz const & a) { return m().is_small(a); }
void del(mpz & a) { m().del(a); }
void neg(mpz & a) { m().neg(a); p_normalize(a); }
void abs(mpz & a) { m().abs(a); p_normalize(a); }
bool is_zero(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_zero(a); }
bool is_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_one(a); }
bool is_pos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_pos(a); }
bool is_neg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_neg(a); }
bool is_nonpos(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonpos(a); }
bool is_nonneg(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_nonneg(a); }
bool is_minus_one(mpz const & a) { SASSERT(is_p_normalized(a)); return numeral_manager::is_minus_one(a); }
bool eq(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().eq(a, b); }
bool lt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().lt(a, b); }
bool le(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().le(a, b); }
bool gt(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().gt(a, b); }
bool ge(mpz const & a, mpz const & b) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); return m().ge(a, b); }
std::string to_string(mpz const & a) const {
SASSERT(is_p_normalized(a));
return m().to_string(a);
}
void display(std::ostream & out, mpz const & a) const { m().display(out, a); }
void add(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().add(a, b, c); p_normalize(c); }
void sub(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().sub(a, b, c); p_normalize(c); }
void inc(mpz & a) { SASSERT(is_p_normalized(a)); m().inc(a); p_normalize(a); }
void dec(mpz & a) { SASSERT(is_p_normalized(a)); m().dec(a); p_normalize(a); }
void mul(mpz const & a, mpz const & b, mpz & c) { SASSERT(is_p_normalized(a) && is_p_normalized(b)); m().mul(a, b, c); p_normalize(c); }
void addmul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
SASSERT(is_p_normalized(a) && is_p_normalized(b) && is_p_normalized(c)); m().addmul(a, b, c, d); p_normalize(d);
}
// d <- a - b*c
void submul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
SASSERT(is_p_normalized(a));
SASSERT(is_p_normalized(b));
SASSERT(is_p_normalized(c));
m().submul(a, b, c, d);
p_normalize(d);
}
void inv(mpz & a) {
if (m_z) {
UNREACHABLE();
}
else {
SASSERT(!is_zero(a));
// eulers theorem a^(p - 2), but gcd could be more efficient
// a*t1 + p*t2 = 1 => a*t1 = 1 (mod p) => t1 is the inverse (t3 == 1)
TRACE("mpzp_inv_bug", tout << "a: " << m().to_string(a) << ", p: " << m().to_string(m_p) << "\n";);
p_normalize(a);
TRACE("mpzp_inv_bug", tout << "after normalization a: " << m().to_string(a) << "\n";);
m().gcd(a, m_p, m_inv_tmp1, m_inv_tmp2, m_inv_tmp3);
TRACE("mpzp_inv_bug", tout << "tmp1: " << m().to_string(m_inv_tmp1) << "\ntmp2: " << m().to_string(m_inv_tmp2)
<< "\ntmp3: " << m().to_string(m_inv_tmp3) << "\n";);
p_normalize(m_inv_tmp1);
m().swap(a, m_inv_tmp1);
SASSERT(m().is_one(m_inv_tmp3)); // otherwise p is not prime and inverse is not defined
}
}
void swap(mpz & a, mpz & b) noexcept {
SASSERT(is_p_normalized(a) && is_p_normalized(b));
m().swap(a, b);
}
bool divides(mpz const & a, mpz const & b) { return (field() && !is_zero(a)) || m().divides(a, b); }
// a/b = a*inv(b)
void div(mpz const & a, mpz const & b, mpz & c) {
if (m_z) {
return m().div(a, b, c);
}
else {
SASSERT(m_p_prime);
SASSERT(is_p_normalized(a));
m().set(m_div_tmp, b);
inv(m_div_tmp);
mul(a, m_div_tmp, c);
SASSERT(is_p_normalized(c));
}
}
static unsigned hash(mpz const & a) { return numeral_manager::hash(a); }
void gcd(mpz const & a, mpz const & b, mpz & c) {
SASSERT(is_p_normalized(a) && is_p_normalized(b));
m().gcd(a, b, c);
SASSERT(is_p_normalized(c));
}
void gcd(unsigned sz, mpz const * as, mpz & g) {
m().gcd(sz, as, g);
SASSERT(is_p_normalized(g));
}
void gcd(mpz const & r1, mpz const & r2, mpz & a, mpz & b, mpz & g) {
SASSERT(is_p_normalized(r1) && is_p_normalized(r2));
m().gcd(r1, r2, a, b, g);
p_normalize(a);
p_normalize(b);
}
void set(mpz & a, mpz & val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, int val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, unsigned val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, char const * val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, int64_t val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, uint64_t val) { m().set(a, val); p_normalize(a); }
void set(mpz & a, mpz const & val) { m().set(a, val); p_normalize(a); }
bool is_uint64(mpz & a) const { const_cast(this)->p_normalize(a); return m().is_uint64(a); }
bool is_int64(mpz & a) const { const_cast(this)->p_normalize(a); return m().is_int64(a); }
uint64_t get_uint64(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_uint64(a); }
int64_t get_int64(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_int64(a); }
double get_double(mpz & a) const { const_cast(this)->p_normalize(a); return m().get_double(a); }
void power(mpz const & a, unsigned k, mpz & b) {
SASSERT(is_p_normalized(a));
unsigned mask = 1;
mpz power;
set(power, a);
set(b, 1);
while (mask <= k) {
if (mask & k)
mul(b, power, b);
mul(power, power, power);
mask = mask << 1;
}
del(power);
}
bool is_perfect_square(mpz const & a, mpz & root) {
if (m_z) {
return m().is_perfect_square(a, root);
}
else {
NOT_IMPLEMENTED_YET();
return false;
}
}
bool is_uint64(mpz const & a) const { return m().is_uint64(a); }
bool is_int64(mpz const & a) const { return m().is_int64(a); }
uint64_t get_uint64(mpz const & a) const { return m().get_uint64(a); }
int64_t get_int64(mpz const & a) const { return m().get_int64(a); }
void mul2k(mpz & a, unsigned k) { m().mul2k(a, k); p_normalize(a); }
void mul2k(mpz const & a, unsigned k, mpz & r) { m().mul2k(a, k, r); p_normalize(r); }
unsigned power_of_two_multiple(mpz const & n) { return m().power_of_two_multiple(n); }
unsigned log2(mpz const & n) { return m().log2(n); }
unsigned mlog2(mpz const & n) { return m().mlog2(n); }
void machine_div2k(mpz & a, unsigned k) { m().machine_div2k(a, k); SASSERT(is_p_normalized(a)); }
void machine_div2k(mpz const & a, unsigned k, mpz & r) { m().machine_div2k(a, k, r); SASSERT(is_p_normalized(r)); }
bool root(mpz & a, unsigned n) { SASSERT(!modular()); return m().root(a, n); }
bool root(mpz const & a, unsigned n, mpz & r) { SASSERT(!modular()); return m().root(a, n, r); }
};