Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.util.rational.h Maven / Gradle / Ivy
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
rational.h
Abstract:
Rational numbers
Author:
Leonardo de Moura (leonardo) 2006-09-18.
Revision History:
--*/
#pragma once
#include "util/mpq.h"
class rational {
mpq m_val;
static rational m_zero;
static rational m_one;
static rational m_minus_one;
static vector m_powers_of_two;
static synch_mpq_manager * g_mpq_manager;
static synch_mpq_manager & m() { return *g_mpq_manager; }
void display_hex(std::ostream & out, unsigned num_bits) const { SASSERT(is_int()); m().display_hex(out, m_val.numerator(), num_bits); }
void display_bin(std::ostream& out, unsigned num_bits) const { SASSERT(is_int()); m().display_bin(out, m_val.numerator(), num_bits); }
public:
static void initialize();
static void finalize();
/*
ADD_INITIALIZER('rational::initialize();')
ADD_FINALIZER('rational::finalize();')
*/
rational() {}
rational(rational const & r) { m().set(m_val, r.m_val); }
rational(rational&&) = default;
explicit rational(int n) { m().set(m_val, n); }
explicit rational(unsigned n) { m().set(m_val, n); }
rational(int n, int d) { m().set(m_val, n, d); }
rational(mpq const & q) { m().set(m_val, q); }
rational(mpz const & z) { m().set(m_val, z); }
explicit rational(double z) { UNREACHABLE(); }
explicit rational(char const * v) { m().set(m_val, v); }
explicit rational(unsigned const * v, unsigned sz) { m().set(m_val, sz, v); }
struct i64 {};
rational(int64_t i, i64) { m().set(m_val, i); }
struct ui64 {};
rational(uint64_t i, ui64) { m().set(m_val, i); }
~rational() { synch_mpq_manager::del(g_mpq_manager, m_val); }
mpq const & to_mpq() const { return m_val; }
unsigned bitsize() const { return m().bitsize(m_val); }
unsigned storage_size() const { return m().storage_size(m_val); }
void reset() { m().reset(m_val); }
bool is_int() const { return m().is_int(m_val); }
bool is_small() const { return m().is_small(m_val); }
bool is_big() const { return !is_small(); }
unsigned hash() const { return m().hash(m_val); }
struct hash_proc { unsigned operator()(rational const& r) const { return r.hash(); } };
struct eq_proc { bool operator()(rational const& r1, rational const& r2) const { return r1 == r2; } };
void swap(rational & n) noexcept { m().swap(m_val, n.m_val); }
std::string to_string() const { return m().to_string(m_val); }
void display(std::ostream & out) const { return m().display(out, m_val); }
void display_decimal(std::ostream & out, unsigned prec, bool truncate = false) const { return m().display_decimal(out, m_val, prec, truncate); }
void display_smt2(std::ostream & out) const { return m().display_smt2(out, m_val, false); }
struct as_hex_wrapper {
rational const& r;
unsigned bw;
};
as_hex_wrapper as_hex(unsigned bw) const { return as_hex_wrapper{*this, bw}; }
friend inline std::ostream& operator<<(std::ostream& out, as_hex_wrapper const& ab) {
ab.r.display_hex(out, ab.bw);
return out;
}
struct as_bin_wrapper {
rational const& r;
unsigned bw;
};
as_bin_wrapper as_bin(unsigned bw) const { return as_bin_wrapper{*this, bw}; }
friend inline std::ostream& operator<<(std::ostream& out, as_bin_wrapper const& ab) {
ab.r.display_bin(out, ab.bw);
return out;
}
bool is_uint64() const { return m().is_uint64(m_val); }
bool is_int64() const { return m().is_int64(m_val); }
uint64_t get_uint64() const { return m().get_uint64(m_val); }
int64_t get_int64() const { return m().get_int64(m_val); }
bool is_unsigned() const { return is_uint64() && (get_uint64() < (1ull << 32ull)); }
unsigned get_unsigned() const {
SASSERT(is_unsigned());
return static_cast(get_uint64());
}
bool is_int32() const {
if (is_small() && is_int()) return true;
// we don't assume that if it is small, then it is int32.
if (!is_int64()) return false;
int64_t v = get_int64();
return INT_MIN <= v && v <= INT_MAX;
}
int get_int32() const {
SASSERT(is_int32());
return (int)get_int64();
}
double get_double() const { return m().get_double(m_val); }
rational const & get_rational() const { return *this; }
rational const & get_infinitesimal() const { return m_zero; }
rational & operator=(rational&&) = default;
rational & operator=(rational const & r) {
m().set(m_val, r.m_val);
return *this;
}
rational & operator=(bool) = delete;
rational operator*(bool r1) const = delete;
rational & operator=(int v) {
m().set(m_val, v);
return *this;
}
rational & operator=(double v) = delete;
friend inline rational numerator(rational const & r) { rational result; m().get_numerator(r.m_val, result.m_val); return result; }
friend inline rational denominator(rational const & r) { rational result; m().get_denominator(r.m_val, result.m_val); return result; }
friend inline rational inv(rational const & r) {
rational result;
m().inv(r.m_val, result.m_val);
return result;
}
rational & operator+=(rational const & r) {
m().add(m_val, r.m_val, m_val);
return *this;
}
rational & operator+=(int r) {
(*this) += rational(r);
return *this;
}
rational & operator-=(rational const & r) {
m().sub(m_val, r.m_val, m_val);
return *this;
}
rational& operator-=(int r) {
(*this) -= rational(r);
return *this;
}
rational & operator*=(rational const & r) {
m().mul(m_val, r.m_val, m_val);
return *this;
}
rational & operator/=(rational const & r) {
m().div(m_val, r.m_val, m_val);
return *this;
}
rational & operator%=(rational const & r) {
m().rem(m_val, r.m_val, m_val);
return *this;
}
rational & operator%=(int v) {
return *this %= rational(v);
}
rational & operator/=(int v) {
return *this /= rational(v);
}
rational & operator*=(int v) {
return *this *= rational(v);
}
friend inline rational div(rational const & r1, rational const & r2) {
rational r;
rational::m().idiv(r1.m_val, r2.m_val, r.m_val);
return r;
}
friend inline void div(rational const & r1, rational const & r2, rational & r) {
rational::m().idiv(r1.m_val, r2.m_val, r.m_val);
}
friend inline rational machine_div(rational const & r1, rational const & r2) {
rational r;
rational::m().machine_idiv(r1.m_val, r2.m_val, r.m_val);
return r;
}
friend inline rational machine_div_rem(rational const & r1, rational const & r2, rational & rem) {
rational r;
rational::m().machine_idiv_rem(r1.m_val, r2.m_val, r.m_val, rem.m_val);
return r;
}
friend inline rational machine_div2k(rational const & r1, unsigned k) {
rational r;
rational::m().machine_idiv2k(r1.m_val, k, r.m_val);
return r;
}
friend inline rational mod(rational const & r1, rational const & r2) {
rational r;
rational::m().mod(r1.m_val, r2.m_val, r.m_val);
return r;
}
friend inline void mod(rational const & r1, rational const & r2, rational & r) {
rational::m().mod(r1.m_val, r2.m_val, r.m_val);
}
friend inline rational mod2k(rational const & a, unsigned k) {
if (a.is_nonneg() && a.is_int() && a.bitsize() <= k)
return a;
return mod(a, power_of_two(k));
}
friend inline rational operator%(rational const & r1, rational const & r2) {
rational r;
rational::m().rem(r1.m_val, r2.m_val, r.m_val);
return r;
}
friend inline rational mod_hat(rational const & a, rational const & b) {
SASSERT(b.is_pos());
rational r = mod(a,b);
SASSERT(r.is_nonneg());
rational r2 = r;
r2 *= rational(2);
if (operator<(b, r2)) {
r -= b;
}
return r;
}
rational & operator++() {
m().add(m_val, m().mk_q(1), m_val);
return *this;
}
const rational operator++(int) { rational tmp(*this); ++(*this); return tmp; }
rational & operator--() {
m().sub(m_val, m().mk_q(1), m_val);
return *this;
}
const rational operator--(int) { rational tmp(*this); --(*this); return tmp; }
friend inline bool operator==(rational const & r1, rational const & r2) {
return rational::m().eq(r1.m_val, r2.m_val);
}
friend inline bool operator<(rational const & r1, rational const & r2) {
return rational::m().lt(r1.m_val, r2.m_val);
}
void neg() {
m().neg(m_val);
}
bool is_zero() const {
return m().is_zero(m_val);
}
bool is_one() const {
return m().is_one(m_val);
}
bool is_minus_one() const {
return m().is_minus_one(m_val);
}
bool is_neg() const {
return m().is_neg(m_val);
}
bool is_pos() const {
return m().is_pos(m_val);
}
bool is_nonneg() const {
return m().is_nonneg(m_val);
}
bool is_nonpos() const {
return m().is_nonpos(m_val);
}
bool is_even() const {
return m().is_even(m_val);
}
bool is_odd() const {
return !is_even();
}
friend inline rational floor(rational const & r) {
rational f;
rational::m().floor(r.m_val, f.m_val);
return f;
}
friend inline rational ceil(rational const & r) {
rational f;
rational::m().ceil(r.m_val, f.m_val);
return f;
}
rational expt(int n) const {
rational result;
m().power(m_val, n, result.m_val);
return result;
}
static rational power_of_two(unsigned k);
bool is_power_of_two(unsigned & shift) const {
return m().is_power_of_two(m_val, shift);
}
bool is_power_of_two() const {
unsigned shift = 0;
return m().is_power_of_two(m_val, shift);
}
bool mult_inverse(unsigned num_bits, rational & result) const;
rational pseudo_inverse(unsigned num_bits) const;
static rational const & zero() {
return m_zero;
}
static rational const & one() {
return m_one;
}
static rational const & minus_one() {
return m_minus_one;
}
void addmul(rational const & c, rational const & k) {
if (c.is_one())
operator+=(k);
else if (c.is_minus_one())
operator-=(k);
else if (k.is_one())
operator+=(c);
else if (k.is_minus_one())
operator-=(c);
else {
rational tmp(k);
tmp *= c;
operator+=(tmp);
}
}
// Perform: this -= c * k
void submul(const rational & c, const rational & k) {
if (c.is_one())
operator-=(k);
else if (c.is_minus_one())
operator+=(k);
else {
rational tmp(k);
tmp *= c;
operator-=(tmp);
}
}
bool is_int_perfect_square(rational & root) const {
return m().is_int_perfect_square(m_val, root.m_val);
}
bool is_perfect_square(rational & root) const {
return m().is_perfect_square(m_val, root.m_val);
}
bool root(unsigned n, rational & root) const {
return m().root(m_val, n, root.m_val);
}
friend inline std::ostream & operator<<(std::ostream & target, rational const & r) {
return target << m().to_string(r.m_val);
}
friend inline bool divides(rational const& a, rational const& b) {
return m().divides(a.to_mpq(), b.to_mpq());
}
friend inline rational gcd(rational const & r1, rational const & r2);
//
// extended Euclid:
// r1*a + r2*b = gcd
//
friend inline rational gcd(rational const & r1, rational const & r2, rational & a, rational & b);
friend inline rational lcm(rational const & r1, rational const & r2) {
rational result;
m().lcm(r1.m_val, r2.m_val, result.m_val);
return result;
}
friend inline rational bitwise_or(rational const & r1, rational const & r2) {
rational result;
m().bitwise_or(r1.m_val, r2.m_val, result.m_val);
return result;
}
friend inline rational bitwise_and(rational const & r1, rational const & r2) {
rational result;
m().bitwise_and(r1.m_val, r2.m_val, result.m_val);
return result;
}
friend inline rational bitwise_xor(rational const & r1, rational const & r2) {
rational result;
m().bitwise_xor(r1.m_val, r2.m_val, result.m_val);
return result;
}
friend inline rational bitwise_not(unsigned sz, rational const & r1) {
rational result;
m().bitwise_not(sz, r1.m_val, result.m_val);
return result;
}
friend inline rational abs(rational const & r);
rational to_rational() const { return *this; }
static bool is_rational() { return true; }
unsigned get_num_digits(rational const& base) const {
SASSERT(is_int());
SASSERT(!is_neg());
rational n(*this);
unsigned num_digits = 1;
n = div(n, base);
while (n.is_pos()) {
++num_digits;
n = div(n, base);
}
return num_digits;
}
unsigned get_num_bits() const {
return get_num_digits(rational(2));
}
unsigned get_num_decimal() const {
return get_num_digits(rational(10));
}
/**
* \brief Return the biggest k s.t. 2^k <= a.
* \remark Return 0 if a is not positive.
*/
unsigned prev_power_of_two() const { return m().prev_power_of_two(m_val); }
/**
* \brief Return the smallest k s.t. a <= 2^k.
* \remark Return 0 if a is not positive.
*/
unsigned next_power_of_two() const { return m().next_power_of_two(m_val); }
bool get_bit(unsigned index) const {
return m().get_bit(m_val, index);
}
unsigned trailing_zeros() const {
if (is_zero())
return 0;
unsigned k = 0;
for (; !get_bit(k); ++k);
return k;
}
/** Number of trailing zeros in an N-bit representation */
unsigned parity(unsigned num_bits) const {
SASSERT(!is_neg());
SASSERT(*this < rational::power_of_two(num_bits));
if (is_zero())
return num_bits;
return trailing_zeros();
}
static bool limit_denominator(rational &num, rational const& limit);
};
inline bool operator!=(rational const & r1, rational const & r2) {
return !operator==(r1, r2);
}
inline bool operator>(rational const & r1, rational const & r2) {
return operator<(r2, r1);
}
inline bool operator<(int r1, rational const & r2) {
return rational(r1) < r2;
}
inline bool operator<(rational const & r1, int r2) {
return r1 < rational(r2);
}
inline bool operator<=(rational const & r1, rational const & r2) {
return !operator>(r1, r2);
}
inline bool operator>=(rational const & r1, rational const & r2) {
return !operator<(r1, r2);
}
inline bool operator>(rational const & a, int b) {
return a > rational(b);
}
inline bool operator>(int a, rational const & b) {
return rational(a) > b;
}
inline bool operator>=(rational const& a, int b) {
return a >= rational(b);
}
inline bool operator>=(int a, rational const& b) {
return rational(a) >= b;
}
inline bool operator<=(rational const& a, int b) {
return a <= rational(b);
}
inline bool operator<=(int a, rational const& b) {
return rational(a) <= b;
}
inline bool operator!=(rational const& a, int b) {
return !(a == rational(b));
}
inline bool operator==(rational const & a, int b) {
return a == rational(b);
}
inline rational operator+(rational const & r1, rational const & r2) {
return rational(r1) += r2;
}
inline rational operator+(int r1, rational const & r2) {
return rational(r1) + r2;
}
inline rational operator+(rational const & r1, int r2) {
return r1 + rational(r2);
}
inline rational operator-(rational const & r1, rational const & r2) {
return rational(r1) -= r2;
}
inline rational operator-(rational const & r1, int r2) {
return r1 - rational(r2);
}
inline rational operator-(int r1, rational const & r2) {
return rational(r1) - r2;
}
inline rational operator-(rational const & r) {
rational result(r);
result.neg();
return result;
}
inline rational operator*(rational const & r1, rational const & r2) {
return rational(r1) *= r2;
}
inline rational operator*(rational const & r1, bool r2) {
UNREACHABLE();
return r1 * rational(r2);
}
inline rational operator*(rational const & r1, int r2) {
return r1 * rational(r2);
}
inline rational operator*(bool r1, rational const & r2) {
UNREACHABLE();
return rational(r1) * r2;
}
inline rational operator*(int r1, rational const & r2) {
return rational(r1) * r2;
}
inline rational operator/(rational const & r1, rational const & r2) {
return rational(r1) /= r2;
}
inline rational operator/(rational const & r1, int r2) {
return r1 / rational(r2);
}
inline rational operator/(rational const & r1, bool r2) {
UNREACHABLE();
return r1 / rational(r2);
}
inline rational operator/(int r1, rational const & r2) {
return rational(r1) / r2;
}
inline rational power(rational const & r, unsigned p) {
return r.expt(p);
}
inline rational abs(rational const & r) {
rational result(r);
rational::m().abs(result.m_val);
return result;
}
inline rational gcd(rational const & r1, rational const & r2) {
rational result;
rational::m().gcd(r1.m_val, r2.m_val, result.m_val);
return result;
}
inline rational gcd(rational const & r1, rational const & r2, rational & a, rational & b) {
rational result;
rational::m().gcd(r1.m_val, r2.m_val, a.m_val, b.m_val, result.m_val);
return result;
}
inline void swap(rational& r1, rational& r2) noexcept {
r1.swap(r2);
}