
z3-z3-4.13.0.examples.python.tutorial.html.fixpoint-examples.htm Maven / Gradle / Ivy
Show all versions of z3-turnkey Show documentation
Z3Py Fixedpoints
Fixedpoints
This tutorial illustrates uses of Z3's fixedpoint engine.
The following papers
μZ - An Efficient Engine for Fixed-Points with Constraints.
(CAV 2011) and
Generalized Property Directed Reachability (SAT 2012)
describe some of the main features of the engine.
Please send feedback, comments and/or corrections to
[email protected].
Introduction
This tutorial covers some of the fixedpoint utilities available with Z3.
The main features are a basic Datalog engine, an engine with relational
algebra and an engine based on a generalization of the Property
Directed Reachability algorithm.
Basic Datalog
The default fixed-point engine is a bottom-up Datalog engine.
It works with finite relations and uses finite table representations
as hash tables as the default way to represent finite relations.
Relations, rules and queries
The first example illustrates how to declare relations, rules and
how to pose queries.
fp = Fixedpoint()
a, b, c = Bools('a b c')
fp.register_relation(a.decl(), b.decl(), c.decl())
fp.rule(a,b)
fp.rule(b,c)
fp.set(engine='datalog')
print "current set of rules\n", fp
print fp.query(a)
fp.fact(c)
print "updated set of rules\n", fp
print fp.query(a)
print fp.get_answer()
The example illustrates some of the basic constructs.
fp = Fixedpoint()
creates a context for fixed-point computation.
fp.register_relation(a.decl(), b.decl(), c.decl())
Register the relations a, b, c as recursively defined.
fp.rule(a,b)
Create the rule that a follows from b.
In general you can create a rule with multiple premises and a name using
the format
fp.rule(head,[body1,...,bodyN],name)
The name is optional. It is used for tracking the rule in derivation proofs.
Continuing with the example, a is false unless b is established.
fp.query(a)
Asks if a can be derived. The rules so far say that a
follows if b is established and that b follows if c
is established. But nothing establishes c and b is also not
established, so a cannot be derived.
fp.fact(c)
Add a fact (shorthand for fp.rule(c,True)).
Now it is the case that a can be derived.
Explanations
It is also possible to get an explanation for a derived query.
For the finite Datalog engine, an explanation is a trace that
provides information of how a fact was derived. The explanation
is an expression whose function symbols are Horn rules and facts used
in the derivation.
fp = Fixedpoint()
a, b, c = Bools('a b c')
fp.register_relation(a.decl(), b.decl(), c.decl())
fp.rule(a,b)
fp.rule(b,c)
fp.fact(c)
fp.set(generate_explanations=True, engine='datalog')
print fp.query(a)
print fp.get_answer()
Relations with arguments
Relations can take arguments. We illustrate relations with arguments
using edges and paths in a graph.
fp = Fixedpoint()
fp.set(engine='datalog')
s = BitVecSort(3)
edge = Function('edge', s, s, BoolSort())
path = Function('path', s, s, BoolSort())
a = Const('a',s)
b = Const('b',s)
c = Const('c',s)
fp.register_relation(path,edge)
fp.declare_var(a,b,c)
fp.rule(path(a,b), edge(a,b))
fp.rule(path(a,c), [edge(a,b),path(b,c)])
v1 = BitVecVal(1,s)
v2 = BitVecVal(2,s)
v3 = BitVecVal(3,s)
v4 = BitVecVal(4,s)
fp.fact(edge(v1,v2))
fp.fact(edge(v1,v3))
fp.fact(edge(v2,v4))
print "current set of rules", fp
print fp.query(path(v1,v4)), "yes we can reach v4 from v1"
print fp.query(path(v3,v4)), "no we cannot reach v4 from v3"
The example uses the declaration
fp.declare_var(a,b,c)
to instrument the fixed-point engine that a, b, c
should be treated as variables
when they appear in rules. Think of the convention as they way bound variables are
passed to quantifiers in Z3Py.
Rush Hour
A more entertaining example of using the basic fixed point engine
is to solve the Rush Hour puzzle. The puzzle is about moving
a red car out of a gridlock. We have encoded a configuration
and compiled a set of rules that encode the legal moves of the cars
given the configuration. Other configurations can be tested by
changing the parameters passed to the constructor for Car .
We have encoded the configuration from
an online puzzle you can solve manually, or cheat on by asking Z3.
class Car():
def __init__(self, is_vertical, base_pos, length, start, color):
self.is_vertical = is_vertical
self.base = base_pos
self.length = length
self.start = start
self.color = color
def __eq__(self, other):
return self.color == other.color
def __ne__(self, other):
return self.color != other.color
dimension = 6
red_car = Car(False, 2, 2, 3, "red")
cars = [
Car(True, 0, 3, 0, 'yellow'),
Car(False, 3, 3, 0, 'blue'),
Car(False, 5, 2, 0, "brown"),
Car(False, 0, 2, 1, "lgreen"),
Car(True, 1, 2, 1, "light blue"),
Car(True, 2, 2, 1, "pink"),
Car(True, 2, 2, 4, "dark green"),
red_car,
Car(True, 3, 2, 3, "purple"),
Car(False, 5, 2, 3, "light yellow"),
Car(True, 4, 2, 0, "orange"),
Car(False, 4, 2, 4, "black"),
Car(True, 5, 3, 1, "light purple")
]
num_cars = len(cars)
B = BoolSort()
bv3 = BitVecSort(3)
state = Function('state', [ bv3 for c in cars] + [B])
def num(i):
return BitVecVal(i,bv3)
def bound(i):
return Const(cars[i].color, bv3)
fp = Fixedpoint()
fp.set(generate_explanations=True)
fp.declare_var([bound(i) for i in range(num_cars)])
fp.register_relation(state)
def mk_state(car, value):
return state([ (num(value) if (cars[i] == car) else bound(i))
for i in range(num_cars)])
def mk_transition(row, col, i0, j, car0):
body = [mk_state(car0, i0)]
for index in range(num_cars):
car = cars[index]
if car0 != car:
if car.is_vertical and car.base == col:
for i in range(dimension):
if i <= row and row < i + car.length and i + car.length <= dimension:
body += [bound(index) != num(i)]
if car.base == row and not car.is_vertical:
for i in range(dimension):
if i <= col and col < i + car.length and i + car.length <= dimension:
body += [bound(index) != num(i)]
s = "%s %d->%d" % (car0.color, i0, j)
fp.rule(mk_state(car0, j), body, s)
def move_down(i, car):
free_row = i + car.length
if free_row < dimension:
mk_transition(free_row, car.base, i, i + 1, car)
def move_up(i, car):
free_row = i - 1
if 0 <= free_row and i + car.length <= dimension:
mk_transition(free_row, car.base, i, i - 1, car)
def move_left(i, car):
free_col = i - 1;
if 0 <= free_col and i + car.length <= dimension:
mk_transition(car.base, free_col, i, i - 1, car)
def move_right(i, car):
free_col = car.length + i
if free_col < dimension:
mk_transition(car.base, free_col, i, i + 1, car)
# Initial state:
fp.fact(state([num(cars[i].start) for i in range(num_cars)]))
# Transitions:
for car in cars:
for i in range(dimension):
if car.is_vertical:
move_down(i, car)
move_up(i, car)
else:
move_left(i, car)
move_right(i, car)
def get_instructions(ans):
lastAnd = ans.arg(0).children()[-1]
trace = lastAnd.children()[1]
while trace.num_args() > 0:
print trace.decl()
trace = trace.children()[-1]
print fp
goal = state([ (num(4) if cars[i] == red_car else bound(i))
for i in range(num_cars)])
fp.query(goal)
get_instructions(fp.get_answer())
Abstract Domains
The underlying engine uses table operations
that are based on relational algebra. Representations are
opaque to the underlying engine.
Relational algebra operations are well defined for arbitrary relations.
They don't depend on whether the relations denote a finite or an
infinite set of values.
Z3 contains two built-in tables for infinite domains.
The first is for intervals of integers and reals.
The second is for bound constraints between two integers or reals.
A bound constraint is of the form x or x .
When used in conjunction, they form
an abstract domain that is called the
Pentagon abstract
domain. Z3 implements reduced products
of abstract domains that enables sharing constraints between
the interval and bounds domains.
Below we give a simple example that illustrates a loop at location l0.
The loop is incremented as long as the loop counter does not exceed an upper
bound. Using the combination of bound and interval domains
we can collect derived invariants from the loop and we can also establish
that the state after the loop does not exceed the bound.
I = IntSort()
B = BoolSort()
l0 = Function('l0',I,I,B)
l1 = Function('l1',I,I,B)
s = Fixedpoint()
s.set(engine='datalog',compile_with_widening=True,
unbound_compressor=False)
s.register_relation(l0,l1)
s.set_predicate_representation(l0, 'interval_relation', 'bound_relation')
s.set_predicate_representation(l1, 'interval_relation', 'bound_relation')
m, x, y = Ints('m x y')
s.declare_var(m, x, y)
s.rule(l0(0,m), 0 < m)
s.rule(l0(x+1,m), [l0(x,m), x < m])
s.rule(l1(x,m), [l0(x,m), m <= x])
print "At l0 we learn that x, y are non-negative:"
print s.query(l0(x,y))
print s.get_answer()
print "At l1 we learn that x <= y and both x and y are bigger than 0:"
print s.query(l1(x,y))
print s.get_answer()
print "The state where x < y is not reachable"
print s.query(And(l1(x,y), x < y))
The example uses the option
set_option(dl_compile_with_widening=True)
to instrument Z3 to apply abstract interpretation widening on loop boundaries.
Engine for Property Directed Reachability
A different underlying engine for fixed-points is based on
an algorithm for Property Directed Reachability (PDR) .
The PDR engine is enabled using the instruction
set_option(dl_engine=1)
The version in Z3 applies to Horn clauses with arithmetic and
Boolean domains. When using arithmetic you should enable
the main abstraction engine used in Z3 for arithmetic in PDR.
set_option(dl_pdr_use_farkas=True)
The engine also works with domains using algebraic
data-types and bit-vectors, although it is currently not
overly tuned for either.
The PDR engine is targeted at applications from symbolic model
checking of software. The systems may be infinite state.
The following examples also serve a purpose of showing
how software model checking problems (of safety properties)
can be embedded into Horn clauses and solved using PDR.
Procedure Calls
McCarthy's 91 function illustrates a procedure that calls itself recursively
twice. The Horn clauses below encode the recursive function:
mc(x) = if x > 100 then x - 10 else mc(mc(x+11))
The general scheme for encoding recursive procedures is by creating a predicate
for each procedure and adding an additional output variable to the predicate.
Nested calls to procedures within a body can be encoded as a conjunction
of relations.
mc = Function('mc', IntSort(), IntSort(), BoolSort())
n, m, p = Ints('n m p')
fp = Fixedpoint()
fp.declare_var(n,m)
fp.register_relation(mc)
fp.rule(mc(m, m-10), m > 100)
fp.rule(mc(m, n), [m <= 100, mc(m+11,p),mc(p,n)])
print fp.query(And(mc(m,n),n < 90))
print fp.get_answer()
print fp.query(And(mc(m,n),n < 91))
print fp.get_answer()
print fp.query(And(mc(m,n),n < 92))
print fp.get_answer()
The first two queries are unsatisfiable. The PDR engine produces the same proof of unsatisfiability.
The proof is an inductive invariant for each recursive predicate. The PDR engine introduces a
special query predicate for the query.
Bakery
We can also prove invariants of reactive systems. It is convenient to encode reactive systems
as guarded transition systems. It is perhaps for some not as convenient to directly encode
guarded transitions as recursive Horn clauses. But it is fairly easy to write a translator
from guarded transition systems to recursive Horn clauses. We illustrate a translator
and Lamport's two process Bakery algorithm in the next example.
set_option(relevancy=0,verbose=1)
def flatten(l):
return [s for t in l for s in t]
class TransitionSystem():
def __init__(self, initial, transitions, vars1):
self.fp = Fixedpoint()
self.initial = initial
self.transitions = transitions
self.vars1 = vars1
def declare_rels(self):
B = BoolSort()
var_sorts = [ v.sort() for v in self.vars1 ]
state_sorts = var_sorts
self.state_vals = [ v for v in self.vars1 ]
self.state_sorts = state_sorts
self.var_sorts = var_sorts
self.state = Function('state', state_sorts + [ B ])
self.step = Function('step', state_sorts + state_sorts + [ B ])
self.fp.register_relation(self.state)
self.fp.register_relation(self.step)
# Set of reachable states are transitive closure of step.
def state0(self):
idx = range(len(self.state_sorts))
return self.state([Var(i,self.state_sorts[i]) for i in idx])
def state1(self):
n = len(self.state_sorts)
return self.state([Var(i+n, self.state_sorts[i]) for i in range(n)])
def rho(self):
n = len(self.state_sorts)
args1 = [ Var(i,self.state_sorts[i]) for i in range(n) ]
args2 = [ Var(i+n,self.state_sorts[i]) for i in range(n) ]
args = args1 + args2
return self.step(args)
def declare_reachability(self):
self.fp.rule(self.state1(), [self.state0(), self.rho()])
# Define transition relation
def abstract(self, e):
n = len(self.state_sorts)
sub = [(self.state_vals[i], Var(i,self.state_sorts[i])) for i in range(n)]
return substitute(e, sub)
def declare_transition(self, tr):
len_s = len(self.state_sorts)
effect = tr["effect"]
vars1 = [Var(i,self.state_sorts[i]) for i in range(len_s)] + effect
rho1 = self.abstract(self.step(vars1))
guard = self.abstract(tr["guard"])
self.fp.rule(rho1, guard)
def declare_transitions(self):
for t in self.transitions:
self.declare_transition(t)
def declare_initial(self):
self.fp.rule(self.state0(),[self.abstract(self.initial)])
def query(self, query):
self.declare_rels()
self.declare_initial()
self.declare_reachability()
self.declare_transitions()
query = And(self.state0(), self.abstract(query))
print self.fp
print query
print self.fp.query(query)
print self.fp.get_answer()
# print self.fp.statistics()
L = Datatype('L')
L.declare('L0')
L.declare('L1')
L.declare('L2')
L = L.create()
L0 = L.L0
L1 = L.L1
L2 = L.L2
y0 = Int('y0')
y1 = Int('y1')
l = Const('l', L)
m = Const('m', L)
t1 = { "guard" : l == L0,
"effect" : [ L1, y1 + 1, m, y1 ] }
t2 = { "guard" : And(l == L1, Or([y0 <= y1, y1 == 0])),
"effect" : [ L2, y0, m, y1 ] }
t3 = { "guard" : l == L2,
"effect" : [ L0, IntVal(0), m, y1 ]}
s1 = { "guard" : m == L0,
"effect" : [ l, y0, L1, y0 + 1 ] }
s2 = { "guard" : And(m == L1, Or([y1 <= y0, y0 == 0])),
"effect" : [ l, y0, L2, y1 ] }
s3 = { "guard" : m == L2,
"effect" : [ l, y0, L0, IntVal(0) ]}
ptr = TransitionSystem( And(l == L0, y0 == 0, m == L0, y1 == 0),
[t1, t2, t3, s1, s2, s3],
[l, y0, m, y1])
ptr.query(And([l == L2, m == L2 ]))
The rather verbose (and in no way minimal) inductive invariants are produced as answers.
Functional Programs
We can also verify some properties of functional programs using Z3's
generalized PDR. Let us here consider an example from
Predicate Abstraction and CEGAR for Higher-Order Model
Checking, Kobayashi et.al. PLDI 2011.
We encode functional programs by taking a suitable operational
semantics and encoding an evaluator that is specialized to
the program being verified (we don't encode a general purpose
evaluator, you should partial evaluate it to help verification).
We use algebraic data-types to encode the current closure that is
being evaluated.
# let max max2 x y z = max2 (max2 x y) z
# let f x y = if x > y then x else y
# assert (f (max f x y z) x) = (max f x y z)
Expr = Datatype('Expr')
Expr.declare('Max')
Expr.declare('f')
Expr.declare('I', ('i', IntSort()))
Expr.declare('App', ('fn',Expr),('arg',Expr))
Expr = Expr.create()
Max = Expr.Max
I = Expr.I
App = Expr.App
f = Expr.f
Eval = Function('Eval',Expr,Expr,Expr,BoolSort())
x = Const('x',Expr)
y = Const('y',Expr)
z = Const('z',Expr)
r1 = Const('r1',Expr)
r2 = Const('r2',Expr)
max = Const('max',Expr)
xi = Const('xi',IntSort())
yi = Const('yi',IntSort())
fp = Fixedpoint()
fp.register_relation(Eval)
fp.declare_var(x,y,z,r1,r2,max,xi,yi)
# Max max x y z = max (max x y) z
fp.rule(Eval(App(App(App(Max,max),x),y), z, r2),
[Eval(App(max,x),y,r1),
Eval(App(max,r1),z,r2)])
# f x y = x if x >= y
# f x y = y if x < y
fp.rule(Eval(App(f,I(xi)),I(yi),I(xi)),xi >= yi)
fp.rule(Eval(App(f,I(xi)),I(yi),I(yi)),xi < yi)
print fp.query(And(Eval(App(App(App(Max,f),x),y),z,r1),
Eval(App(f,x),r1,r2),
r1 != r2))
print fp.get_answer()