Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.13.0.examples.tptp.tptp5.cpp Maven / Gradle / Ivy
/*++
Copyright (c) 2015 Microsoft Corporation
--*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "z3++.h"
struct alloc_region {
std::list m_alloc;
void * allocate(size_t s) {
char * res = new char[s];
m_alloc.push_back(res);
return res;
}
~alloc_region() {
std::list::iterator it = m_alloc.begin(), end = m_alloc.end();
for (; it != end; ++it) {
delete *it;
}
}
};
template
class flet {
T & m_ref;
T m_old;
public:
flet(T& x, T const& y): m_ref(x), m_old(x) { x = y; }
~flet() { m_ref = m_old; }
};
struct symbol_compare {
bool operator()(z3::symbol const& s1, z3::symbol const& s2) const {
return s1 < s2;
};
};
template
struct symbol_table {
typedef std::map map;
map m_map;
void insert(z3::symbol s, T val) {
m_map.insert(std::pair(s, val));
}
bool find(z3::symbol const& s, T& val) {
typename map::iterator it = m_map.find(s);
if (it == m_map.end()) {
return false;
}
else {
val = it->second;
return true;
}
}
};
typedef std::set symbol_set;
struct named_formulas {
std::vector m_formulas;
std::vector m_names;
std::vector m_files;
bool m_has_conjecture;
named_formulas(): m_has_conjecture(false) {}
void push_back(z3::expr fml, char const * name, char const* file) {
m_formulas.push_back(fml);
m_names.push_back(name);
m_files.push_back(file);
}
void set_has_conjecture() {
m_has_conjecture = true;
}
bool has_conjecture() const {
return m_has_conjecture;
}
};
inline void * operator new(size_t s, alloc_region & r) { return r.allocate(s); }
inline void * operator new[](size_t s, alloc_region & r) { return r.allocate(s); }
inline void operator delete(void *, alloc_region & ) { /* do nothing */ }
inline void operator delete[](void *, alloc_region & ) { /* do nothing */ }
struct failure_ex {
std::string msg;
failure_ex(char const* m):msg(m) {}
};
extern char* tptp_lval[];
extern int yylex();
static char* strdup(alloc_region& r, char const* s) {
size_t l = strlen(s) + 1;
char* result = new (r) char[l];
memcpy(result, s, l);
return result;
}
class TreeNode {
char const* m_symbol;
int m_symbol_index;
TreeNode** m_children;
public:
TreeNode(alloc_region& r, char const* sym,
TreeNode* A, TreeNode* B, TreeNode* C, TreeNode* D, TreeNode* E,
TreeNode* F, TreeNode* G, TreeNode* H, TreeNode* I, TreeNode* J):
m_symbol(strdup(r, sym)),
m_symbol_index(-1) {
m_children = new (r) TreeNode*[10];
m_children[0] = A;
m_children[1] = B;
m_children[2] = C;
m_children[3] = D;
m_children[4] = E;
m_children[5] = F;
m_children[6] = G;
m_children[7] = H;
m_children[8] = I;
m_children[9] = J;
}
char const* symbol() const { return m_symbol; }
TreeNode *const* children() const { return m_children; }
TreeNode* child(unsigned i) const { return m_children[i]; }
int index() const { return m_symbol_index; }
void set_index(int idx) { m_symbol_index = idx; }
};
TreeNode* MkToken(alloc_region& r, char const* token, int symbolIndex) {
TreeNode* ss;
char* symbol = tptp_lval[symbolIndex];
ss = new (r) TreeNode(r, symbol, NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
ss->set_index(symbolIndex);
return ss;
}
// ------------------------------------------------------
// Build Z3 formulas.
class env {
z3::context& m_context;
z3::expr_vector m_bound; // vector of bound constants.
z3::sort m_univ;
symbol_table m_decls;
symbol_table m_defined_sorts;
static std::vector* m_nodes;
static alloc_region* m_region;
char const* m_filename;
enum binary_connective {
IFF,
IMPLIES,
IMPLIED,
LESS_TILDE_GREATER,
TILDE_VLINE
};
void mk_error(TreeNode* f, char const* msg) {
std::ostringstream strm;
strm << "expected: " << msg << "\n";
strm << "got: " << f->symbol();
throw failure_ex(strm.str().c_str());
}
void mk_not_handled(TreeNode* f, char const* msg) {
std::ostringstream strm;
strm << "Construct " << f->symbol() << " not handled: " << msg;
throw failure_ex(strm.str().c_str());
}
void mk_input(TreeNode* f, named_formulas& fmls) {
if (!strcmp(f->symbol(),"annotated_formula")) {
mk_annotated_formula(f->child(0), fmls);
}
else if (!strcmp(f->symbol(),"include")) {
mk_include(f->child(2), f->child(3), fmls);
}
else {
mk_error(f, "annotated formula or include");
}
}
void mk_annotated_formula(TreeNode* f, named_formulas& fmls) {
if (!strcmp(f->symbol(),"fof_annotated")) {
fof_annotated(f->child(2), f->child(4), f->child(6), f->child(7), fmls);
}
else if (!strcmp(f->symbol(),"tff_annotated")) {
fof_annotated(f->child(2), f->child(4), f->child(6), f->child(7), fmls);
}
else if (!strcmp(f->symbol(),"cnf_annotated")) {
cnf_annotated(f->child(2), f->child(4), f->child(6), f->child(7), fmls);
}
else if (!strcmp(f->symbol(),"thf_annotated")) {
mk_error(f, "annotated formula (not thf)");
}
else {
mk_error(f, "annotated formula");
}
}
void check_arity(unsigned num_args, unsigned arity) {
if (num_args != arity) {
throw failure_ex("arity mismatch");
}
}
void mk_include(TreeNode* file_name, TreeNode* formula_selection, named_formulas& fmls) {
char const* fn = file_name->child(0)->symbol();
TreeNode* name_list = formula_selection->child(2);
if (name_list && !strcmp("null",name_list->symbol())) {
name_list = 0;
}
std::string inc_name;
bool f_exists = false;
for (unsigned i = 1; !f_exists && i <= 3; ++i) {
inc_name.clear();
f_exists = mk_filename(fn, i, inc_name);
}
if (!f_exists) {
inc_name.clear();
f_exists = mk_env_filename(fn, inc_name);
}
if (!f_exists) {
inc_name = fn;
}
parse(inc_name.c_str(), fmls);
while (name_list) {
return mk_error(name_list, "name list (not handled)");
//char const* name = name_list->child(0)->symbol();
name_list = name_list->child(2);
}
}
#define CHECK(_node_) if (0 != strcmp(_node_->symbol(),#_node_)) return mk_error(_node_,#_node_);
const char* get_name(TreeNode* name) {
if (!name->child(0)) {
mk_error(name, "node with a child");
}
if (!name->child(0)->child(0)) {
return name->child(0)->symbol();
}
return name->child(0)->child(0)->symbol();
}
z3::expr mk_forall(z3::expr_vector& bound, z3::expr body) {
return mk_quantifier(true, bound, body);
}
z3::expr mk_quantifier(bool is_forall, z3::expr_vector& bound, z3::expr body) {
Z3_app* vars = new Z3_app[bound.size()];
for (unsigned i = 0; i < bound.size(); ++i) {
vars[i] = (Z3_app) bound[i];
}
Z3_ast r = Z3_mk_quantifier_const(m_context, is_forall, 1, bound.size(), vars, 0, 0, body);
delete[] vars;
return z3::expr(m_context, r);
}
void cnf_annotated(TreeNode* name, TreeNode* formula_role, TreeNode* formula, TreeNode* annotations, named_formulas& fmls) {
symbol_set st;
get_cnf_variables(formula, st);
symbol_set::iterator it = st.begin(), end = st.end();
std::vector names;
m_bound.resize(0);
for(; it != end; ++it) {
names.push_back(*it);
m_bound.push_back(m_context.constant(names.back(), m_univ));
}
z3::expr r(m_context);
cnf_formula(formula, r);
if (!m_bound.empty()) {
r = mk_forall(m_bound, r);
}
char const* role = formula_role->child(0)->symbol();
if (!strcmp(role,"conjecture")) {
fmls.set_has_conjecture();
r = !r;
}
fmls.push_back(r, get_name(name), m_filename);
m_bound.resize(0);
}
void cnf_formula(TreeNode* formula, z3::expr& r) {
std::vector disj;
if (formula->child(1)) {
disjunction(formula->child(1), disj);
}
else {
disjunction(formula->child(0), disj);
}
if (disj.size() > 0) {
r = disj[0];
}
else {
r = m_context.bool_val(false);
}
for (unsigned i = 1; i < disj.size(); ++i) {
r = r || disj[i];
}
}
void disjunction(TreeNode* d, std::vector& r) {
z3::expr lit(m_context);
if (d->child(2)) {
disjunction(d->child(0), r);
literal(d->child(2), lit);
r.push_back(lit);
}
else {
literal(d->child(0), lit);
r.push_back(lit);
}
}
void literal(TreeNode* l, z3::expr& lit) {
if (!strcmp(l->child(0)->symbol(),"~")) {
fof_formula(l->child(1), lit);
lit = !lit;
}
else {
fof_formula(l->child(0), lit);
}
}
void fof_annotated(TreeNode* name, TreeNode* formula_role, TreeNode* formula, TreeNode* annotations, named_formulas& fmls) {
z3::expr fml(m_context);
//CHECK(fof_formula);
CHECK(formula_role);
fof_formula(formula->child(0), fml);
char const* role = formula_role->child(0)->symbol();
if (!strcmp(role,"conjecture")) {
fmls.set_has_conjecture();
fmls.push_back(!fml, get_name(name), m_filename);
}
else if (!strcmp(role,"type")) {
}
else {
fmls.push_back(fml, get_name(name), m_filename);
}
}
void fof_formula(TreeNode* f, z3::expr& fml) {
z3::expr f1(m_context);
char const* name = f->symbol();
if (!strcmp(name,"fof_logic_formula") ||
!strcmp(name,"fof_binary_assoc") ||
!strcmp(name,"fof_binary_formula") ||
!strcmp(name,"tff_logic_formula") ||
!strcmp(name,"tff_binary_assoc") ||
!strcmp(name,"tff_binary_formula") ||
!strcmp(name,"atomic_formula") ||
!strcmp(name,"defined_atomic_formula")) {
fof_formula(f->child(0), fml);
}
else if (!strcmp(name, "fof_sequent") ||
!strcmp(name, "tff_sequent")) {
fof_formula(f->child(0), f1);
fof_formula(f->child(2), fml);
fml = implies(f1, fml);
}
else if (!strcmp(name, "fof_binary_nonassoc") ||
!strcmp(name, "tff_binary_nonassoc")) {
fof_formula(f->child(0), f1);
fof_formula(f->child(2), fml);
//SASSERT(!strcmp("binary_connective",f->child(1)->symbol()));
char const* conn = f->child(1)->child(0)->symbol();
if (!strcmp(conn, "<=>")) {
fml = (f1 == fml);
}
else if (!strcmp(conn, "=>")) {
fml = implies(f1, fml);
}
else if (!strcmp(conn, "<=")) {
fml = implies(fml, f1);
}
else if (!strcmp(conn, "<~>")) {
fml = ! (f1 == fml);
}
else if (!strcmp(conn, "~|")) {
fml = !(f1 || fml);
}
else if (!strcmp(conn, "~&")) {
fml = ! (f1 && fml);
}
else {
mk_error(f->child(1)->child(0), "connective");
}
}
else if (!strcmp(name,"fof_or_formula") ||
!strcmp(name,"tff_or_formula")) {
fof_formula(f->child(0), f1);
fof_formula(f->child(2), fml);
fml = f1 || fml;
}
else if (!strcmp(name,"fof_and_formula") ||
!strcmp(name,"tff_and_formula")) {
fof_formula(f->child(0), f1);
fof_formula(f->child(2), fml);
fml = f1 && fml;
}
else if (!strcmp(name,"fof_unitary_formula") ||
!strcmp(name,"tff_unitary_formula")) {
if (f->child(1)) {
// parenthesis
fof_formula(f->child(1), fml);
}
else {
fof_formula(f->child(0), fml);
}
}
else if (!strcmp(name,"fof_quantified_formula") ||
!strcmp(name,"tff_quantified_formula")) {
fof_quantified_formula(f->child(0), f->child(2), f->child(5), fml);
}
else if (!strcmp(name,"fof_unary_formula") ||
!strcmp(name,"tff_unary_formula")) {
if (!f->child(1)) {
fof_formula(f->child(0), fml);
}
else {
fof_formula(f->child(1), fml);
char const* conn = f->child(0)->child(0)->symbol();
if (!strcmp(conn,"~")) {
fml = !fml;
}
else {
mk_error(f->child(0)->child(0), "fof_unary_formula");
}
}
}
else if (!strcmp(name,"fof_let")) {
mk_let(f->child(2), f->child(5), fml);
}
else if (!strcmp(name,"variable")) {
char const* v = f->child(0)->symbol();
if (!find_bound(v, fml)) {
mk_error(f->child(0), "variable");
}
}
else if (!strcmp(name,"fof_conditional")) {
z3::expr f2(m_context);
fof_formula(f->child(2), f1);
fof_formula(f->child(4), f2);
fof_formula(f->child(6), fml);
fml = ite(f1, f2, fml);
}
else if (!strcmp(name,"plain_atomic_formula") ||
!strcmp(name,"defined_plain_formula") ||
!strcmp(name,"system_atomic_formula")) {
z3::sort srt(m_context.bool_sort());
term(f->child(0), srt, fml);
}
else if (!strcmp(name,"defined_infix_formula") ||
!strcmp(name,"fol_infix_unary")) {
z3::expr t1(m_context), t2(m_context);
term(f->child(0), m_univ, t1);
term(f->child(2), m_univ, t2);
TreeNode* inf = f->child(1);
while (inf && strcmp(inf->symbol(),"=") && strcmp(inf->symbol(),"!=")) {
inf = inf->child(0);
}
if (!inf) {
mk_error(f->child(1), "defined_infix_formula");
}
char const* conn = inf->symbol();
if (!strcmp(conn,"=")) {
fml = t1 == t2;
}
else if (!strcmp(conn,"!=")) {
fml = ! (t1 == t2);
}
else {
mk_error(inf, "defined_infix_formula");
}
}
else if (!strcmp(name, "tff_typed_atom")) {
while (!strcmp(f->child(0)->symbol(),"(")) {
f = f->child(1);
}
char const* id = 0;
z3::sort s(m_context);
z3::sort_vector sorts(m_context);
mk_id(f->child(0), id);
if (is_ttype(f->child(2))) {
s = mk_sort(id);
m_defined_sorts.insert(symbol(id), s);
}
else {
mk_mapping_sort(f->child(2), sorts, s);
z3::func_decl fd(m_context.function(id, sorts, s));
m_decls.insert(symbol(id), fd);
}
}
else {
mk_error(f, "fof_formula");
}
}
bool is_ttype(TreeNode* t) {
char const* name = t->symbol();
if (!strcmp(name,"atomic_defined_word")) {
return !strcmp("$tType", t->child(0)->symbol());
}
return false;
}
void fof_quantified_formula(TreeNode* fol_quantifier, TreeNode* vl, TreeNode* formula, z3::expr& fml) {
unsigned l = m_bound.size();
mk_variable_list(vl);
fof_formula(formula, fml);
bool is_forall = !strcmp(fol_quantifier->child(0)->symbol(),"!");
z3::expr_vector bound(m_context);
for (unsigned i = l; i < m_bound.size(); ++i) {
bound.push_back(m_bound[i]);
}
fml = mk_quantifier(is_forall, bound, fml);
m_bound.resize(l);
}
void mk_variable_list(TreeNode* variable_list) {
while (variable_list) {
TreeNode* var = variable_list->child(0);
if (!strcmp(var->symbol(),"tff_variable")) {
var = var->child(0);
}
if (!strcmp(var->symbol(),"variable")) {
char const* name = var->child(0)->symbol();
m_bound.push_back(m_context.constant(name, m_univ));
}
else if (!strcmp(var->symbol(),"tff_typed_variable")) {
z3::sort s(m_context);
char const* name = var->child(0)->child(0)->symbol();
mk_sort(var->child(2), s);
m_bound.push_back(m_context.constant(name, s));
}
else {
mk_error(var, "variable_list");
}
variable_list = variable_list->child(2);
}
}
void mk_sort(TreeNode* t, z3::sort& s) {
char const* name = t->symbol();
if (!strcmp(name, "tff_atomic_type") ||
!strcmp(name, "defined_type")) {
mk_sort(t->child(0), s);
}
else if (!strcmp(name, "atomic_defined_word")) {
z3::symbol sname = symbol(t->child(0)->symbol());
z3::sort srt(m_context);
if (!strcmp("$tType", t->child(0)->symbol())) {
char const* id = 0;
s = mk_sort(id);
m_defined_sorts.insert(symbol(id), s);
}
else if (m_defined_sorts.find(sname, srt)) {
s = srt;
}
else {
s = mk_sort(sname);
if (sname == symbol("$rat")) {
throw failure_ex("rational sorts are not handled\n");
}
mk_error(t, sname.str().c_str());
}
}
else if (!strcmp(name,"atomic_word")) {
name = t->child(0)->symbol();
z3::symbol symname = symbol(name);
s = mk_sort(symname);
}
else {
mk_error(t, "sort");
}
}
void mk_mapping_sort(TreeNode* t, z3::sort_vector& domain, z3::sort& s) {
char const* name = t->symbol();
//char const* id = 0;
if (!strcmp(name,"tff_top_level_type")) {
mk_mapping_sort(t->child(0), domain, s);
}
else if (!strcmp(name,"tff_atomic_type")) {
mk_sort(t->child(0), s);
}
else if (!strcmp(name,"tff_mapping_type")) {
TreeNode* t1 = t->child(0);
if (t1->child(1)) {
mk_xprod_sort(t1->child(1), domain);
}
else {
mk_sort(t1->child(0), s);
domain.push_back(s);
}
mk_sort(t->child(2), s);
}
else {
mk_error(t, "mapping sort");
}
}
void mk_xprod_sort(TreeNode* t, z3::sort_vector& sorts) {
char const* name = t->symbol();
z3::sort s1(m_context), s2(m_context);
if (!strcmp(name, "tff_atomic_type")) {
mk_sort(t->child(0), s1);
sorts.push_back(s1);
}
else if (!strcmp(name, "tff_xprod_type")) {
name = t->child(0)->symbol();
if (!strcmp(name, "tff_atomic_type") ||
!strcmp(name, "tff_xprod_type")) {
mk_xprod_sort(t->child(0), sorts);
mk_xprod_sort(t->child(2), sorts);
}
else if (t->child(1)) {
mk_xprod_sort(t->child(1), sorts);
}
else {
mk_error(t, "xprod sort");
}
}
else {
mk_error(t, "xprod sort");
}
}
void term(TreeNode* t, z3::sort const& s, z3::expr& r) {
char const* name = t->symbol();
if (!strcmp(name, "defined_plain_term") ||
!strcmp(name, "system_term") ||
!strcmp(name, "plain_term")) {
if (!t->child(1)) {
term(t->child(0), s, r);
}
else {
apply_term(t->child(0), t->child(2), s, r);
}
}
else if (!strcmp(name, "constant") ||
!strcmp(name, "functor") ||
!strcmp(name, "defined_plain_formula") ||
!strcmp(name, "defined_functor") ||
!strcmp(name, "defined_constant") ||
!strcmp(name, "system_constant") ||
!strcmp(name, "defined_atomic_term") ||
!strcmp(name, "system_functor") ||
!strcmp(name, "function_term") ||
!strcmp(name, "term") ||
!strcmp(name, "defined_term")) {
term(t->child(0), s, r);
}
else if (!strcmp(name, "defined_atom")) {
char const* name0 = t->child(0)->symbol();
if (!strcmp(name0,"number")) {
name0 = t->child(0)->child(0)->symbol();
char const* per = strchr(name0, '.');
bool is_real = 0 != per;
bool is_rat = 0 != strchr(name0, '/');
bool is_int = !is_real && !is_rat;
if (is_int) {
r = m_context.int_val(name0);
}
else {
r = m_context.real_val(name0);
}
}
else if (!strcmp(name0, "distinct_object")) {
throw failure_ex("distinct object not handled");
}
else {
mk_error(t->child(0), "number or distinct object");
}
}
else if (!strcmp(name, "atomic_defined_word")) {
char const* ch = t->child(0)->symbol();
z3::symbol s = symbol(ch);
z3::func_decl fd(m_context);
if (!strcmp(ch, "$true")) {
r = m_context.bool_val(true);
}
else if (!strcmp(ch, "$false")) {
r = m_context.bool_val(false);
}
else if (m_decls.find(s, fd)) {
r = fd(0,0);
}
else {
mk_error(t->child(0), "atomic_defined_word");
}
}
else if (!strcmp(name, "atomic_word")) {
z3::func_decl f(m_context);
z3::symbol sym = symbol(t->child(0)->symbol());
if (m_decls.find(sym, f)) {
r = f(0,0);
}
else {
r = m_context.constant(sym, s);
}
}
else if (!strcmp(name, "variable")) {
char const* v = t->child(0)->symbol();
if (!find_bound(v, r)) {
mk_error(t->child(0), "variable not bound");
}
}
else {
mk_error(t, "term not recognized");
}
}
void apply_term(TreeNode* f, TreeNode* args, z3::sort const& s, z3::expr& r) {
z3::expr_vector terms(m_context);
z3::sort_vector sorts(m_context);
mk_args(args, terms);
for (unsigned i = 0; i < terms.size(); ++i) {
sorts.push_back(terms[i].get_sort());
}
if (!strcmp(f->symbol(),"functor") ||
!strcmp(f->symbol(),"system_functor") ||
!strcmp(f->symbol(),"defined_functor")) {
f = f->child(0);
}
bool atomic_word = !strcmp(f->symbol(),"atomic_word");
if (atomic_word ||
!strcmp(f->symbol(),"atomic_defined_word") ||
!strcmp(f->symbol(),"atomic_system_word")) {
char const* ch = f->child(0)->symbol();
z3::symbol fn = symbol(ch);
z3::func_decl fun(m_context);
z3::context& ctx = r.ctx();
if (!strcmp(ch,"$less")) {
check_arity(terms.size(), 2);
r = terms[0] < terms[1];
}
else if (!strcmp(ch,"$lesseq")) {
check_arity(terms.size(), 2);
r = terms[0] <= terms[1];
}
else if (!strcmp(ch,"$greater")) {
check_arity(terms.size(), 2);
r = terms[0] > terms[1];
}
else if (!strcmp(ch,"$greatereq")) {
check_arity(terms.size(), 2);
r = terms[0] >= terms[1];
}
else if (!strcmp(ch,"$uminus")) {
check_arity(terms.size(), 1);
r = -terms[0];
}
else if (!strcmp(ch,"$sum")) {
check_arity(terms.size(), 2);
r = terms[0] + terms[1];
}
else if (!strcmp(ch,"$plus")) {
check_arity(terms.size(), 2);
r = terms[0] + terms[1];
}
else if (!strcmp(ch,"$difference")) {
check_arity(terms.size(), 2);
r = terms[0] - terms[1];
}
else if (!strcmp(ch,"$product")) {
check_arity(terms.size(), 2);
r = terms[0] * terms[1];
}
else if (!strcmp(ch,"$quotient")) {
check_arity(terms.size(), 2);
r = terms[0] / terms[1];
}
else if (!strcmp(ch,"$quotient_e")) {
check_arity(terms.size(), 2);
r = terms[0] / terms[1];
}
else if (!strcmp(ch,"$distinct")) {
if (terms.size() == 2) {
r = terms[0] != terms[1];
}
else {
r = distinct(terms);
}
}
else if (!strcmp(ch,"$floor") || !strcmp(ch,"$to_int")) {
check_arity(terms.size(), 1);
r = to_real(to_int(terms[0]));
}
else if (!strcmp(ch,"$to_real")) {
check_arity(terms.size(), 1);
r = terms[0];
if (r.get_sort().is_int()) {
r = to_real(terms[0]);
}
}
else if (!strcmp(ch,"$is_int")) {
check_arity(terms.size(), 1);
r = z3::expr(ctx, Z3_mk_is_int(ctx, terms[0]));
}
else if (!strcmp(ch,"$true")) {
r = ctx.bool_val(true);
}
else if (!strcmp(ch,"$false")) {
r = ctx.bool_val(false);
}
// ceiling(x) = -floor(-x)
else if (!strcmp(ch,"$ceiling")) {
check_arity(terms.size(), 1);
r = ceiling(terms[0]);
}
// truncate - The nearest integral value with magnitude not greater than the absolute value of the argument.
// if x >= 0 floor(x) else ceiling(x)
else if (!strcmp(ch,"$truncate")) {
check_arity(terms.size(), 1);
r = truncate(terms[0]);
}
// The nearest integral number to the argument. When the argument
// is halfway between two integral numbers, the nearest even integral number to the argument.
else if (!strcmp(ch,"$round")) {
check_arity(terms.size(), 1);
z3::expr t = terms[0];
z3::expr i = to_int(t);
z3::expr i2 = i + ctx.real_val(1,2);
r = ite(t > i2, i + 1, ite(t == i2, ite(is_even(i), i, i+1), i));
}
// $quotient_e(N,D) - the Euclidean quotient, which has a non-negative remainder.
// If D is positive then $quotient_e(N,D) is the floor (in the type of N and D) of
// the real division N/D, and if D is negative then $quotient_e(N,D) is the ceiling of N/D.
// $quotient_t(N,D) - the truncation of the real division N/D.
else if (!strcmp(ch,"$quotient_t")) {
check_arity(terms.size(), 2);
r = truncate(terms[0] / terms[1]);
}
// $quotient_f(N,D) - the floor of the real division N/D.
else if (!strcmp(ch,"$quotient_f")) {
check_arity(terms.size(), 2);
r = to_real(to_int(terms[0] / terms[1]));
}
// For t in {$int,$rat, $real}, x in {e, t,f}, $quotient_x and $remainder_x are related by
// ! [N:t,D:t] : $sum($product($quotient_x(N,D),D),$remainder_x(N,D)) = N
// For zero divisors the result is not specified.
else if (!strcmp(ch,"$remainder_t")) {
mk_not_handled(f, ch);
}
else if (!strcmp(ch,"$remainder_e")) {
check_arity(terms.size(), 2);
r = z3::expr(ctx, Z3_mk_mod(ctx, terms[0], terms[1]));
}
else if (!strcmp(ch,"$remainder_r")) {
mk_not_handled(f, ch);
}
else if (!strcmp(ch,"$to_rat") ||
!strcmp(ch,"$is_rat")) {
mk_not_handled(f, ch);
}
else if (m_decls.find(fn, fun)) {
r = fun(terms);
}
else if (true) {
z3::func_decl func(m_context);
func = m_context.function(fn, sorts, s);
r = func(terms);
}
else {
mk_error(f->child(0), "atomic, defined or system word");
}
return;
}
mk_error(f, "function");
}
z3::expr to_int(z3::expr e) {
return z3::expr(e.ctx(), Z3_mk_real2int(e.ctx(), e));
}
z3::expr to_real(z3::expr e) {
return z3::expr(e.ctx(), Z3_mk_int2real(e.ctx(), e));
}
z3::expr ceiling(z3::expr e) {
return -to_real(to_int(-e));
}
z3::expr is_even(z3::expr e) {
z3::context& ctx = e.ctx();
z3::expr two = ctx.int_val(2);
z3::expr m = z3::expr(ctx, Z3_mk_mod(ctx, e, two));
return m == 0;
}
z3::expr truncate(z3::expr e) {
return ite(e >= 0, to_int(e), ceiling(e));
}
bool check_app(z3::func_decl& f, unsigned num, z3::expr const* args) {
if (f.arity() == num) {
for (unsigned i = 0; i < num; ++i) {
if (!eq(args[i].get_sort(), f.domain(i))) {
return false;
}
}
return true;
}
else {
return true;
}
}
void mk_args(TreeNode* args, z3::expr_vector& result) {
z3::expr t(m_context);
while (args) {
term(args->child(0), m_univ, t);
result.push_back(t);
args = args->child(2);
}
}
bool find_bound(char const* v, z3::expr& b) {
for (unsigned l = m_bound.size(); l > 0; ) {
--l;
if (v == m_bound[l].decl().name().str()) {
b = m_bound[l];
return true;
}
}
return false;
}
void mk_id(TreeNode* f, char const*& sym) {
char const* name = f->symbol();
if (!strcmp(name, "tff_untyped_atom") ||
!strcmp(name, "functor") ||
!strcmp(name, "system_functor")) {
mk_id(f->child(0), sym);
}
else if (!strcmp(name, "atomic_word") ||
!strcmp(name, "atomic_system_word")) {
sym = f->child(0)->symbol();
}
else {
mk_error(f, "atom");
}
}
void mk_let(TreeNode* let_vars, TreeNode* f, z3::expr& fml) {
mk_error(f, "let construct is not handled");
}
FILE* open_file(char const* filename) {
FILE* fp = 0;
#ifdef _WINDOWS
if (0 > fopen_s(&fp, filename, "r") || fp == 0) {
fp = 0;
}
#else
fp = fopen(filename, "r");
#endif
return fp;
}
bool is_sep(char s) {
return s == '/' || s == '\\';
}
void add_separator(const char* rel_name, std::string& inc_name) {
size_t sz = inc_name.size();
if (sz == 0) return;
if (sz > 0 && is_sep(inc_name[sz-1])) return;
if (is_sep(rel_name[0])) return;
inc_name += "/";
}
void append_rel_name(const char * rel_name, std::string& inc_name) {
if (rel_name[0] == '\'') {
add_separator(rel_name+1, inc_name);
inc_name.append(rel_name+1);
inc_name.resize(inc_name.size()-1);
}
else {
add_separator(rel_name, inc_name);
inc_name.append(rel_name);
}
}
bool mk_filename(const char *rel_name, unsigned num_sep, std::string& inc_name) {
unsigned sep1 = 0, sep2 = 0, sep3 = 0;
size_t len = strlen(m_filename);
for (unsigned i = 0; i < len; ++i) {
if (is_sep(m_filename[i])) {
sep3 = sep2;
sep2 = sep1;
sep1 = i;
}
}
if ((num_sep == 3) && sep3 > 0) {
inc_name.append(m_filename,sep3+1);
}
if ((num_sep == 2) && sep2 > 0) {
inc_name.append(m_filename,sep2+1);
}
if ((num_sep == 1) && sep1 > 0) {
inc_name.append(m_filename,sep1+1);
}
append_rel_name(rel_name, inc_name);
return file_exists(inc_name.c_str());
}
bool file_exists(char const* filename) {
FILE* fp = open_file(filename);
if (!fp) {
return false;
}
fclose(fp);
return true;
}
bool mk_env_filename(const char* rel_name, std::string& inc_name) {
#ifdef _WINDOWS
char buffer[1024];
size_t sz;
errno_t err = getenv_s(
&sz,
buffer,
"$TPTP");
if (err != 0) {
return false;
}
#else
char const* buffer = getenv("$TPTP");
if (!buffer) {
return false;
}
#endif
inc_name = buffer;
append_rel_name(rel_name, inc_name);
return file_exists(inc_name.c_str());
}
void get_cnf_variables(TreeNode* t, symbol_set& symbols) {
std::vector todo;
todo.push_back(t);
while (!todo.empty()) {
t = todo.back();
todo.pop_back();
if (!t) continue;
if (!strcmp(t->symbol(),"variable")) {
z3::symbol sym = symbol(t->child(0)->symbol());
symbols.insert(sym);
}
else {
for (unsigned i = 0; i < 10; ++i) {
todo.push_back(t->child(i));
}
}
}
}
z3::symbol symbol(char const* s) {
return m_context.str_symbol(s);
}
z3::sort mk_sort(char const* s) {
return m_context.uninterpreted_sort(s);
}
z3::sort mk_sort(z3::symbol& s) {
return m_context.uninterpreted_sort(s);
}
public:
env(z3::context& ctx):
m_context(ctx),
m_bound(ctx),
m_univ(mk_sort("$i")),
m_filename(0) {
m_nodes = 0;
m_region = new alloc_region();
m_defined_sorts.insert(symbol("$i"), m_univ);
m_defined_sorts.insert(symbol("$o"), m_context.bool_sort());
m_defined_sorts.insert(symbol("$real"), m_context.real_sort());
m_defined_sorts.insert(symbol("$int"), m_context.int_sort());
}
~env() {
delete m_region;
m_region = 0;
}
void parse(const char* filename, named_formulas& fmls);
static void register_node(TreeNode* t) { m_nodes->push_back(t); }
static alloc_region& r() { return *m_region; }
};
std::vector* env::m_nodes = 0;
alloc_region* env::m_region = 0;
# define P_USERPROC
# define P_ACT(ss) if(verbose)printf("%7d %s\n",yylineno,ss);
# define P_BUILD(sym,A,B,C,D,E,F,G,H,I,J) new (env::r()) TreeNode(env::r(), sym,A,B,C,D,E,F,G,H,I,J)
# define P_TOKEN(tok,symbolIndex) MkToken(env::r(), tok,symbolIndex)
# define P_PRINT(ss) env::register_node(ss)
// ------------------------------------------------------
// created by YACC.
#include "tptp5.tab.c"
extern FILE* yyin;
void env::parse(const char* filename, named_formulas& fmls) {
std::vector nodes;
flet fn(m_filename, filename);
flet*> fnds(m_nodes, &nodes);
FILE* fp = open_file(filename);
if (!fp) {
std::stringstream strm;
strm << "Could not open file " << filename << "\n";
throw failure_ex(strm.str().c_str());
}
yyin = fp;
int result = yyparse();
fclose(fp);
if (result != 0) {
throw failure_ex("could not parse input");
}
for (unsigned i = 0; i < nodes.size(); ++i) {
TreeNode* cl = nodes[i];
if (cl) {
mk_input(cl, fmls);
}
}
}
class pp_tptp {
z3::context& ctx;
std::vector names;
std::vector sorts;
std::vector funs;
std::vector todo;
std::set seen_ids;
unsigned m_formula_id;
unsigned m_node_number;
std::map m_proof_ids;
std::map > m_proof_hypotheses;
std::map m_axiom_ids;
named_formulas* m_named_formulas;
public:
pp_tptp(z3::context& ctx): ctx(ctx), m_formula_id(0) {}
void display_func_decl(std::ostream& out, z3::func_decl& f) {
std::string name = lower_case_fun(f.name());
out << "tff(" << name << "_type, type, (\n " << name << ": ";
unsigned na = f.arity();
switch(na) {
case 0:
break;
case 1: {
z3::sort s(f.domain(0));
display_sort(out, s);
out << " > ";
break;
}
default:
out << "( ";
for (unsigned j = 0; j < na; ++j) {
z3::sort s(f.domain(j));
display_sort(out, s);
if (j + 1 < na) {
out << " * ";
}
}
out << " ) > ";
}
z3::sort srt(f.range());
display_sort(out, srt);
out << ")).\n";
}
void display_axiom(std::ostream& out, z3::expr e) {
out << "tff(formula" << (++m_formula_id) << ", axiom,\n ";
display(out, e, true);
out << ").\n";
}
void display(std::ostream& out, z3::expr e, bool in_paren) {
std::string s;
if (e.is_numeral(s)) {
out << s;
}
else if (e.is_var()) {
unsigned idx = Z3_get_index_value(ctx, e);
out << names[names.size()-1-idx];
}
else if (e.is_app()) {
switch(e.decl().decl_kind()) {
case Z3_OP_TRUE:
out << "$true";
break;
case Z3_OP_FALSE:
out << "$false";
break;
case Z3_OP_AND:
display_infix(out, "&", e, in_paren);
break;
case Z3_OP_OR:
display_infix(out, "|", e, in_paren);
break;
case Z3_OP_IMPLIES:
display_infix(out, "=>", e, in_paren);
break;
case Z3_OP_NOT:
if (!in_paren) out << "(";
out << "~";
display(out, e.arg(0), false);
if (!in_paren) out << ")";
break;
case Z3_OP_EQ:
if (e.arg(0).is_bool()) {
display_infix(out, "<=>", e, in_paren);
}
else {
display_infix(out, "=", e, in_paren);
}
break;
case Z3_OP_IFF:
display_infix(out, "<=>", e, in_paren);
break;
case Z3_OP_XOR:
display_infix(out, "<~>", e, in_paren);
break;
case Z3_OP_MUL:
display_binary(out, "$product", e);
break;
case Z3_OP_ADD:
display_binary(out, "$sum", e);
break;
case Z3_OP_SUB:
display_prefix(out, "$difference", e);
break;
case Z3_OP_LE:
display_prefix(out, "$lesseq", e);
break;
case Z3_OP_GE:
display_prefix(out, "$greatereq", e);
break;
case Z3_OP_LT:
display_prefix(out, "$less", e);
break;
case Z3_OP_GT:
display_prefix(out, "$greater", e);
break;
case Z3_OP_UMINUS:
display_prefix(out, "$uminus", e);
break;
case Z3_OP_DIV:
display_prefix(out, "$quotient", e);
break;
case Z3_OP_IS_INT:
display_prefix(out, "$is_int", e);
break;
case Z3_OP_TO_REAL:
display_prefix(out, "$to_real", e);
break;
case Z3_OP_TO_INT:
display_prefix(out, "$to_int", e);
break;
case Z3_OP_IDIV:
display_prefix(out, "$quotient_e", e);
break;
case Z3_OP_MOD:
display_prefix(out, "$remainder_e", e);
break;
case Z3_OP_ITE:
display_prefix(out, e.is_bool()?"ite_f":"ite_t", e);
break;
case Z3_OP_DISTINCT:
display_prefix(out, "$distinct", e);
break;
case Z3_OP_REM:
throw failure_ex("rem is not handled");
break;
case Z3_OP_OEQ:
display_prefix(out, "$oeq", e);
break;
default:
display_app(out, e);
break;
}
}
else if (e.is_quantifier()) {
bool is_forall = Z3_is_quantifier_forall(ctx, e);
bool is_lambda = Z3_is_lambda(ctx, e);
unsigned nb = Z3_get_quantifier_num_bound(ctx, e);
out << (is_lambda?"^":(is_forall?"!":"?")) << "[";
for (unsigned i = 0; i < nb; ++i) {
Z3_symbol n = Z3_get_quantifier_bound_name(ctx, e, i);
names.push_back(upper_case_var(z3::symbol(ctx, n)));
z3::sort srt(ctx, Z3_get_quantifier_bound_sort(ctx, e, i));
out << names.back() << ": ";
display_sort(out, srt);
if (i + 1 < nb) {
out << ", ";
}
}
out << "] : ";
display(out, e.body(), false);
for (unsigned i = 0; i < nb; ++i) {
names.pop_back();
}
}
}
void display_app(std::ostream& out, z3::expr e) {
if (e.is_const()) {
out << e;
return;
}
out << lower_case_fun(e.decl().name()) << "(";
unsigned n = e.num_args();
for(unsigned i = 0; i < n; ++i) {
display(out, e.arg(i), n == 1);
if (i + 1 < n) {
out << ", ";
}
}
out << ")";
}
void display_sort(std::ostream& out, z3::sort const& s) {
if (s.is_int()) {
out << "$int";
}
else if (s.is_real()) {
out << "$real";
}
else if (s.is_bool()) {
out << "$o";
}
else {
out << s;
}
}
void display_infix(std::ostream& out, char const* conn, z3::expr& e, bool in_paren) {
if (!in_paren) out << "(";
unsigned sz = e.num_args();
for (unsigned i = 0; i < sz; ++i) {
display(out, e.arg(i), false);
if (i + 1 < sz) {
out << " " << conn << " ";
}
}
if (!in_paren) out << ")";
}
void display_prefix(std::ostream& out, char const* conn, z3::expr& e) {
out << conn << "(";
unsigned sz = e.num_args();
for (unsigned i = 0; i < sz; ++i) {
display(out, e.arg(i), sz == 1);
if (i + 1 < sz) {
out << ", ";
}
}
out << ")";
}
void display_binary(std::ostream& out, char const* conn, z3::expr& e) {
out << conn << "(";
unsigned sz = e.num_args();
unsigned np = 1;
for (unsigned i = 0; i < sz; ++i) {
display(out, e.arg(i), false);
if (i + 1 < sz) {
out << ", ";
}
if (i + 2 < sz) {
out << conn << "(";
++np;
}
}
for (unsigned i = 0; i < np; ++i) {
out << ")";
}
}
void collect_axiom_ids(named_formulas& axioms) {
m_named_formulas = &axioms;
m_axiom_ids.clear();
for (unsigned i = 0; i < axioms.m_formulas.size(); ++i) {
z3::expr& e = axioms.m_formulas[i];
unsigned id = Z3_get_ast_id(ctx, e);
m_axiom_ids.insert(std::make_pair(id, i));
}
}
void display_proof(std::ostream& out, named_formulas& fmls, z3::solver& solver) {
m_node_number = 0;
m_proof_ids.clear();
m_proof_hypotheses.clear();
z3::expr proof = solver.proof();
collect_axiom_ids(fmls);
collect_decls(proof);
collect_hypotheses(proof);
display_sort_decls(out);
display_func_decls(out);
display_proof_rec(out, proof);
}
/**
\brief collect hypotheses for each proof node.
*/
void collect_hypotheses(z3::expr& proof) {
Z3_sort proof_sort = proof.get_sort();
size_t todo_size = todo.size();
todo.push_back(proof);
while (todo_size != todo.size()) {
z3::expr p = todo.back();
unsigned id = Z3_get_ast_id(ctx, p);
if (m_proof_hypotheses.find(id) != m_proof_hypotheses.end()) {
todo.pop_back();
continue;
}
bool all_visited = true;
for (unsigned i = 0; i < p.num_args(); ++i) {
z3::expr arg = p.arg(i);
if (arg.get_sort() == proof_sort) {
if (m_proof_hypotheses.find(Z3_get_ast_id(ctx,arg)) == m_proof_hypotheses.end()) {
all_visited = false;
todo.push_back(arg);
}
}
}
if (!all_visited) {
continue;
}
todo.pop_back();
std::set hyps;
if (p.decl().decl_kind() == Z3_OP_PR_LEMMA) {
// we assume here that all hypotheses get consumed in lemmas.
}
else {
for (unsigned i = 0; i < p.num_args(); ++i) {
z3::expr arg = p.arg(i);
if (arg.get_sort() == proof_sort) {
unsigned arg_id = Z3_get_ast_id(ctx,arg);
std::set const& arg_hyps = m_proof_hypotheses.find(arg_id)->second;
std::set::iterator it = arg_hyps.begin(), end = arg_hyps.end();
for (; it != end; ++it) {
hyps.insert(*it);
}
}
}
}
m_proof_hypotheses.insert(std::make_pair(id, hyps));
}
}
unsigned display_proof_rec(std::ostream& out, z3::expr proof) {
Z3_sort proof_sort = proof.get_sort();
size_t todo_size = todo.size();
todo.push_back(proof);
while (todo_size != todo.size()) {
z3::expr p = todo.back();
unsigned id = Z3_get_ast_id(ctx, p);
if (m_proof_ids.find(id) != m_proof_ids.end()) {
todo.pop_back();
continue;
}
switch (p.decl().decl_kind()) {
case Z3_OP_PR_MODUS_PONENS_OEQ: {
unsigned hyp = display_proof_rec(out, p.arg(0));
unsigned num = display_proof_hyp(out, hyp, p.arg(1));
m_proof_ids.insert(std::make_pair(id, num));
todo.pop_back();
continue;
}
default:
break;
}
bool all_visited = true;
for (unsigned i = 0; i < p.num_args(); ++i) {
z3::expr arg = p.arg(i);
if (arg.get_sort() == proof_sort) {
if (m_proof_ids.find(Z3_get_ast_id(ctx,arg)) == m_proof_ids.end()) {
all_visited = false;
todo.push_back(arg);
}
}
}
if (!all_visited) {
continue;
}
todo.pop_back();
unsigned num = ++m_node_number;
m_proof_ids.insert(std::make_pair(id, num));
switch (p.decl().decl_kind()) {
case Z3_OP_PR_ASSERTED: {
std::string formula_name;
std::string formula_file;
unsigned id = Z3_get_ast_id(ctx, p.arg(0));
std::map::iterator it = m_axiom_ids.find(id);
if (it != m_axiom_ids.end()) {
formula_name = m_named_formulas->m_names[it->second];
formula_file = m_named_formulas->m_files[it->second];
}
else {
std::ostringstream str;
str << "axiom_" << id;
formula_name = str.str();
formula_file = "unknown";
}
out << "tff(" << m_node_number << ",axiom,(";
display(out, get_proof_formula(p), true);
out << "), file('" << formula_file << "','";
out << formula_name << "')).\n";
break;
}
case Z3_OP_PR_UNDEF:
throw failure_ex("undef rule not handled");
case Z3_OP_PR_TRUE:
display_inference(out, "true", "thm", p);
break;
case Z3_OP_PR_GOAL:
display_inference(out, "goal", "thm", p);
break;
case Z3_OP_PR_MODUS_PONENS:
display_inference(out, "modus_ponens", "thm", p);
break;
case Z3_OP_PR_REFLEXIVITY:
display_inference(out, "reflexivity", "thm", p);
break;
case Z3_OP_PR_SYMMETRY:
display_inference(out, "symmetry", "thm", p);
break;
case Z3_OP_PR_TRANSITIVITY:
case Z3_OP_PR_TRANSITIVITY_STAR:
display_inference(out, "transitivity", "thm", p);
break;
case Z3_OP_PR_MONOTONICITY:
display_inference(out, "monotonicity", "thm", p);
break;
case Z3_OP_PR_QUANT_INTRO:
display_inference(out, "quant_intro", "thm", p);
break;
case Z3_OP_PR_DISTRIBUTIVITY:
display_inference(out, "distributivity", "thm", p);
break;
case Z3_OP_PR_AND_ELIM:
display_inference(out, "and_elim", "thm", p);
break;
case Z3_OP_PR_NOT_OR_ELIM:
display_inference(out, "or_elim", "thm", p);
break;
case Z3_OP_PR_REWRITE:
case Z3_OP_PR_REWRITE_STAR:
display_inference(out, "rewrite", "thm", p);
break;
case Z3_OP_PR_PULL_QUANT:
display_inference(out, "pull_quant", "thm", p);
break;
case Z3_OP_PR_PUSH_QUANT:
display_inference(out, "push_quant", "thm", p);
break;
case Z3_OP_PR_ELIM_UNUSED_VARS:
display_inference(out, "elim_unused_vars", "thm", p);
break;
case Z3_OP_PR_DER:
display_inference(out, "destructive_equality_resolution", "thm", p);
break;
case Z3_OP_PR_QUANT_INST:
display_inference(out, "quant_inst", "thm", p);
break;
case Z3_OP_PR_HYPOTHESIS:
out << "tff(" << m_node_number << ",assumption,(";
display(out, get_proof_formula(p), true);
out << "), introduced(assumption)).\n";
break;
case Z3_OP_PR_LEMMA: {
out << "tff(" << m_node_number << ",plain,(";
display(out, get_proof_formula(p), true);
out << "), inference(lemma,lemma(discharge,";
unsigned parent_id = Z3_get_ast_id(ctx, p.arg(0));
std::set const& hyps = m_proof_hypotheses.find(parent_id)->second;
print_hypotheses(out, hyps);
out << "))).\n";
break;
}
case Z3_OP_PR_UNIT_RESOLUTION:
display_inference(out, "unit_resolution", "thm", p);
break;
case Z3_OP_PR_IFF_TRUE:
display_inference(out, "iff_true", "thm", p);
break;
case Z3_OP_PR_IFF_FALSE:
display_inference(out, "iff_false", "thm", p);
break;
case Z3_OP_PR_COMMUTATIVITY:
display_inference(out, "commutativity", "thm", p);
break;
case Z3_OP_PR_DEF_AXIOM:
display_inference(out, "tautology", "thm", p);
break;
case Z3_OP_PR_DEF_INTRO:
display_inference(out, "def_intro", "sab", p);
break;
case Z3_OP_PR_APPLY_DEF:
display_inference(out, "apply_def", "sab", p);
break;
case Z3_OP_PR_IFF_OEQ:
display_inference(out, "iff_oeq", "sab", p);
break;
case Z3_OP_PR_NNF_POS:
display_inference(out, "nnf_pos", "sab", p);
break;
case Z3_OP_PR_NNF_NEG:
display_inference(out, "nnf_neg", "sab", p);
break;
case Z3_OP_PR_SKOLEMIZE:
display_inference(out, "skolemize", "sab", p);
break;
case Z3_OP_PR_MODUS_PONENS_OEQ:
display_inference(out, "modus_ponens_sab", "sab", p);
break;
case Z3_OP_PR_TH_LEMMA:
display_inference(out, "theory_lemma", "thm", p);
break;
case Z3_OP_PR_HYPER_RESOLVE:
display_inference(out, "hyper_resolve", "thm", p);
break;
case Z3_OP_PR_BIND:
display_inference(out, "bind", "th", p);
break;
default:
out << "TBD: " << m_node_number << "\n" << p << "\n";
throw failure_ex("rule not handled");
}
}
return m_proof_ids.find(Z3_get_ast_id(ctx, proof))->second;
}
unsigned display_proof_hyp(std::ostream& out, unsigned hyp, z3::expr p) {
z3::expr fml = p.arg(p.num_args()-1);
z3::expr conclusion = fml.arg(1);
switch (p.decl().decl_kind()) {
case Z3_OP_PR_REFLEXIVITY:
return display_hyp_inference(out, "reflexivity", "sab", conclusion, hyp);
case Z3_OP_PR_IFF_OEQ: {
unsigned hyp2 = display_proof_rec(out, p.arg(0));
return display_hyp_inference(out, "modus_ponens", "thm", conclusion, hyp, hyp2);
}
case Z3_OP_PR_NNF_POS:
case Z3_OP_PR_SKOLEMIZE:
return display_hyp_inference(out, "skolemize", "sab", conclusion, hyp);
case Z3_OP_PR_TRANSITIVITY:
case Z3_OP_PR_TRANSITIVITY_STAR: {
unsigned na = p.num_args();
for (unsigned i = 0; i + 1 < na; ++i) {
if (p.arg(i).num_args() != 2) {
// cop-out: Z3 produces transitivity proofs that are not a chain of equivalences/equi-sats.
// the generated proof is (most likely) not going to be checkable.
continue;
}
z3::expr conclusion = p.arg(i).arg(1);
hyp = display_hyp_inference(out, "transitivity", "sab", conclusion, hyp);
}
return hyp;
}
case Z3_OP_PR_MONOTONICITY:
throw failure_ex("monotonicity rule is not handled");
default:
unsigned hyp2 = 0;
if (p.num_args() == 2) {
hyp2 = display_proof_rec(out, p.arg(0));
}
if (p.num_args() > 2) {
std::cout << "unexpected number of arguments: " << p << "\n";
throw failure_ex("unexpected number of arguments");
}
return display_hyp_inference(out, p.decl().name().str().c_str(), "sab", conclusion, hyp, hyp2);
}
return 0;
}
void display_inference(std::ostream& out, char const* name, char const* status, z3::expr p) {
unsigned id = Z3_get_ast_id(ctx, p);
std::set const& hyps = m_proof_hypotheses.find(id)->second;
out << "tff(" << m_node_number << ",plain,\n (";
display(out, get_proof_formula(p), true);
out << "),\n inference(" << name << ",[status(" << status << ")";
if (!hyps.empty()) {
out << ", assumptions(";
print_hypotheses(out, hyps);
out << ")";
}
out << "],";
display_hypotheses(out, p);
out << ")).\n";
}
void print_hypotheses(std::ostream& out, std::set const& hyps) {
std::set::iterator it = hyps.begin(), end = hyps.end();
bool first = true;
out << "[";
for (; it != end; ++it) {
if (!first) {
out << ", ";
}
first = false;
out << m_proof_ids.find(*it)->second;
}
out << "]";
}
unsigned display_hyp_inference(std::ostream& out, char const* name, char const* status, z3::expr conclusion, unsigned hyp1, unsigned hyp2 = 0) {
++m_node_number;
out << "tff(" << m_node_number << ",plain,(\n ";
display(out, conclusion, true);
out << "),\n inference(" << name << ",[status(" << status << ")],";
out << "[" << hyp1;
if (hyp2) {
out << ", " << hyp2;
}
out << "])).\n";
return m_node_number;
}
void get_free_vars(z3::expr const& e, std::vector& vars) {
std::set seen;
size_t sz = todo.size();
todo.push_back(e);
while (todo.size() != sz) {
z3::expr e = todo.back();
todo.pop_back();
unsigned id = Z3_get_ast_id(e.ctx(), e);
if (seen.find(id) != seen.end()) {
continue;
}
seen.insert(id);
if (e.is_var()) {
unsigned idx = Z3_get_index_value(ctx, e);
while (idx >= vars.size()) {
vars.push_back(e.get_sort());
}
vars[idx] = e.get_sort();
}
else if (e.is_app()) {
unsigned sz = e.num_args();
for (unsigned i = 0; i < sz; ++i) {
todo.push_back(e.arg(i));
}
}
else {
// e is a quantifier
std::vector fv;
get_free_vars(e.body(), fv);
unsigned nb = Z3_get_quantifier_num_bound(e.ctx(), e);
for (unsigned i = nb; i < fv.size(); ++i) {
if (vars.size() <= i - nb) {
vars.push_back(fv[i]);
}
}
}
}
}
z3::expr get_proof_formula(z3::expr proof) {
// unsigned na = proof.num_args();
z3::expr result = proof.arg(proof.num_args()-1);
std::vector vars;
get_free_vars(result, vars);
if (vars.empty()) {
return result;
}
Z3_sort* sorts = new Z3_sort[vars.size()];
Z3_symbol* names = new Z3_symbol[vars.size()];
for (unsigned i = 0; i < vars.size(); ++i) {
std::ostringstream str;
str << "X" << (i+1);
sorts[vars.size()-i-1] = vars[i];
names[vars.size()-i-1] = Z3_mk_string_symbol(ctx, str.str().c_str());
}
result = z3::expr(ctx, Z3_mk_forall(ctx, 1, 0, 0, static_cast(vars.size()), sorts, names, result));
delete[] sorts;
delete[] names;
return result;
}
void display_hypotheses(std::ostream& out, z3::expr p) {
unsigned na = p.num_args();
out << "[";
for (unsigned i = 0; i + 1 < na; ++i) {
out << m_proof_ids.find(Z3_get_ast_id(p.ctx(), p.arg(i)))->second;
if (i + 2 < na) {
out << ", ";
}
}
out << "]";
}
void display_sort_decls(std::ostream& out) {
for (unsigned i = 0; i < sorts.size(); ++i) {
display_sort_decl(out, sorts[i]);
}
}
void display_sort_decl(std::ostream& out, z3::sort& s) {
out << "tff(" << s << "_type, type, (" << s << ": $tType)).\n";
}
void display_func_decls(std::ostream& out) {
for (size_t i = 0; i < funs.size(); ++i) {
display_func_decl(out, funs[i]);
}
}
bool contains_id(unsigned id) const {
return seen_ids.find(id) != seen_ids.end();
}
void collect_decls(z3::expr e) {
todo.push_back(e);
while (!todo.empty()) {
z3::expr e = todo.back();
todo.pop_back();
unsigned id = Z3_get_ast_id(ctx, e);
if (contains_id(id)) {
continue;
}
seen_ids.insert(id);
if (e.is_app()) {
collect_fun(e.decl());
unsigned sz = e.num_args();
for (unsigned i = 0; i < sz; ++i) {
todo.push_back(e.arg(i));
}
}
else if (e.is_quantifier()) {
unsigned nb = Z3_get_quantifier_num_bound(e.ctx(), e);
for (unsigned i = 0; i < nb; ++i) {
z3::sort srt(ctx, Z3_get_quantifier_bound_sort(e.ctx(), e, i));
collect_sort(srt);
}
todo.push_back(e.body());
}
else if (e.is_var()) {
collect_sort(e.get_sort());
}
}
}
void collect_sort(z3::sort s) {
unsigned id = Z3_get_sort_id(ctx, s);
if (s.sort_kind() == Z3_UNINTERPRETED_SORT &&
contains_id(id)) {
seen_ids.insert(id);
sorts.push_back(s);
}
}
void collect_fun(z3::func_decl f) {
unsigned id = Z3_get_func_decl_id(ctx, f);
if (contains_id(id)) {
return;
}
seen_ids.insert(id);
if (f.decl_kind() == Z3_OP_UNINTERPRETED) {
funs.push_back(f);
}
for (unsigned i = 0; i < f.arity(); ++i) {
collect_sort(f.domain(i));
}
collect_sort(f.range());
}
std::string upper_case_var(z3::symbol const& sym) {
std::string result = sanitize(sym);
char ch = result[0];
if ('A' <= ch && ch <= 'Z') {
return result;
}
return "X" + result;
}
std::string lower_case_fun(z3::symbol const& sym) {
std::string result = sanitize(sym);
char ch = result[0];
if ('a' <= ch && ch <= 'z') {
return result;
}
else {
return "tptp_fun_" + result;
}
}
std::string sanitize(z3::symbol const& sym) {
std::ostringstream str;
if (sym.kind() == Z3_INT_SYMBOL) {
str << sym;
return str.str();
}
std::string s = sym.str();
size_t sz = s.size();
for (size_t i = 0; i < sz; ++i) {
char ch = s[i];
if ('a' <= ch && ch <= 'z') {
str << ch;
}
else if ('A' <= ch && ch <= 'Z') {
str << ch;
}
else if ('0' <= ch && ch <= '9') {
str << ch;
}
else if ('_' == ch) {
str << ch;
}
else {
str << "_";
}
}
return str.str();
}
};
static char* g_input_file = 0;
static bool g_display_smt2 = false;
static bool g_generate_model = false;
static bool g_generate_proof = false;
static bool g_generate_core = false;
static bool g_display_statistics = false;
static bool g_first_interrupt = true;
static bool g_smt2status = false;
static bool g_check_status = false;
static int g_timeout = 0;
static double g_start_time = 0;
static z3::solver* g_solver = 0;
static z3::context* g_context = 0;
static std::ostream* g_out = &std::cout;
static void display_usage() {
unsigned major, minor, build_number, revision_number;
Z3_get_version(&major, &minor, &build_number, &revision_number);
std::cout << "Z3tptp [" << major << "." << minor << "." << build_number << "." << revision_number << "] (c) 2006-20**. Microsoft Corp.\n";
std::cout << "Usage: tptp [options] [-file:]file\n";
std::cout << " -h, -? prints this message.\n";
std::cout << " -smt2 print SMT-LIB2 benchmark.\n";
std::cout << " -m, -model generate model.\n";
std::cout << " -p, -proof generate proof.\n";
std::cout << " -c, -core generate unsat core of named formulas.\n";
std::cout << " -st, -statistics display statistics.\n";
std::cout << " -t:timeout set timeout (in second).\n";
std::cout << " -smt2status display status in smt2 format instead of SZS.\n";
std::cout << " -check_status check the status produced by Z3 against annotation in benchmark.\n";
std::cout << " - : configuration parameter and value.\n";
std::cout << " -o: file to place output in.\n";
}
static void display_statistics() {
if (g_solver && g_display_statistics) {
std::cout.flush();
std::cerr.flush();
double end_time = static_cast(clock());
z3::stats stats = g_solver->statistics();
std::cout << stats << "\n";
std::cout << "time: " << (end_time - g_start_time)/CLOCKS_PER_SEC << " secs\n";
}
}
static void on_ctrl_c(int) {
if (g_context && g_first_interrupt) {
Z3_interrupt(*g_context);
g_first_interrupt = false;
}
else {
signal (SIGINT, SIG_DFL);
display_statistics();
raise(SIGINT);
}
}
bool parse_token(char const*& line, char const* token) {
char const* result = line;
while (result[0] == ' ') ++result;
while (token[0] && result[0] == token[0]) {
++token;
++result;
}
if (!token[0]) {
line = result;
return true;
}
else {
return false;
}
}
bool parse_is_sat_line(char const* line, bool& is_sat) {
if (!parse_token(line, "%")) return false;
if (!parse_token(line, "Status")) return false;
if (!parse_token(line, ":")) return false;
if (parse_token(line, "Unsatisfiable")) {
is_sat = false;
return true;
}
if (parse_token(line, "Theorem")) {
is_sat = false;
return true;
}
if (parse_token(line, "Theorem")) {
is_sat = false;
return true;
}
if (parse_token(line, "CounterSatisfiable")) {
is_sat = true;
return true;
}
if (parse_token(line, "Satisfiable")) {
is_sat = true;
return true;
}
return false;
}
bool parse_is_sat(char const* filename, bool& is_sat) {
std::ifstream is(filename);
if (is.bad() || is.fail()) {
std::stringstream strm;
strm << "Could not open file " << filename << "\n";
throw failure_ex(strm.str().c_str());
}
for (unsigned i = 0; !is.eof() && i < 200; ++i) {
std::string line;
std::getline(is, line);
if (parse_is_sat_line(line.c_str(), is_sat)) {
return true;
}
}
return false;
}
void parse_cmd_line_args(int argc, char ** argv) {
g_input_file = 0;
g_display_smt2 = false;
int i = 1;
while (i < argc) {
char* arg = argv[i];
//char * eq = 0;
char * opt_arg = 0;
if (arg[0] == '-' || arg[0] == '/') {
++arg;
while (*arg == '-') {
++arg;
}
char * colon = strchr(arg, ':');
if (colon) {
opt_arg = colon + 1;
*colon = 0;
}
if (!strcmp(arg,"h") || !strcmp(arg,"help") || !strcmp(arg,"?")) {
display_usage();
exit(0);
}
if (!strcmp(arg,"p") || !strcmp(arg,"proof")) {
g_generate_proof = true;
}
else if (!strcmp(arg,"m") || !strcmp(arg,"model")) {
g_generate_model = true;
}
else if (!strcmp(arg,"c") || !strcmp(arg,"core")) {
g_generate_core = true;
}
else if (!strcmp(arg,"st") || !strcmp(arg,"statistics")) {
g_display_statistics = true;
}
else if (!strcmp(arg,"check_status")) {
g_check_status = true;
}
else if (!strcmp(arg,"t") || !strcmp(arg,"timeout")) {
if (!opt_arg) {
display_usage();
exit(0);
}
g_timeout = atoi(opt_arg);
}
else if (!strcmp(arg,"smt2status")) {
g_smt2status = true;
}
else if (!strcmp(arg,"o")) {
if (opt_arg) {
g_out = new std::ofstream(opt_arg);
if (g_out->bad() || g_out->fail()) {
std::cout << "Could not open file of output: " << opt_arg << "\n";
exit(0);
}
}
else {
display_usage();
exit(0);
}
}
else if (!strcmp(arg,"smt2")) {
g_display_smt2 = true;
}
else if (!strcmp(arg, "file")) {
g_input_file = opt_arg;
}
else if (opt_arg && arg[0] != '"') {
Z3_global_param_set(arg, opt_arg);
}
else {
std::cerr << "parameter " << arg << " was not recognized\n";
display_usage();
exit(0);
}
}
else {
g_input_file = arg;
}
++i;
}
if (!g_input_file) {
display_usage();
exit(0);
}
}
static bool is_smt2_file(char const* filename) {
size_t len = strlen(filename);
return (len > 4 && !strcmp(filename + len - 5,".smt2"));
}
static void display_tptp(std::ostream& out) {
// run SMT2 parser, pretty print TFA format.
z3::context ctx;
z3::expr_vector fmls = ctx.parse_file(g_input_file);
z3::expr fml = z3::mk_and(fmls);
pp_tptp pp(ctx);
pp.collect_decls(fml);
pp.display_sort_decls(out);
pp.display_func_decls(out);
if (fml.decl().decl_kind() == Z3_OP_AND) {
for (unsigned i = 0; i < fml.num_args(); ++i) {
pp.display_axiom(out, fml.arg(i));
}
}
else {
pp.display_axiom(out, fml);
}
}
static void display_proof(z3::context& ctx, named_formulas& fmls, z3::solver& solver) {
pp_tptp pp(ctx);
pp.display_proof(std::cout, fmls, solver);
}
static void display_model(z3::context& ctx, z3::model model) {
unsigned nc = model.num_consts();
unsigned nf = model.num_funcs();
z3::expr_vector fmls(ctx);
for (unsigned i = 0; i < nc; ++i) {
z3::func_decl f = model.get_const_decl(i);
z3::expr e = model.get_const_interp(f);
fmls.push_back(f() == e);
}
for (unsigned i = 0; i < nf; ++i) {
z3::func_decl f = model.get_func_decl(i);
z3::func_interp fi = model.get_func_interp(f);
unsigned arity = f.arity();
z3::expr_vector args(ctx);
for (unsigned j = 0; j < arity; ++j) {
std::ostringstream str;
str << "X" << j;
z3::symbol sym(ctx, Z3_mk_string_symbol(ctx, str.str().c_str()));
args.push_back(ctx.constant(sym, f.domain(j)));
}
unsigned ne = fi.num_entries();
Z3_ast* conds = new Z3_ast[arity];
Z3_ast* conds_match = new Z3_ast[ne];
z3::expr_vector conds_matchv(ctx);
z3::expr els = fi.else_value();
unsigned num_cases = 0;
for (unsigned k = 0; k < ne; ++k) {
z3::func_entry e = fi.entry(k);
z3::expr_vector condv(ctx), args_e(ctx);
if (((Z3_ast)els) && (Z3_get_ast_id(ctx, els) == Z3_get_ast_id(ctx, e.value()))) {
continue;
}
for (unsigned j = 0; j < arity; ++j) {
args_e.push_back(e.arg(j));
condv.push_back(e.arg(j) == args[j]);
conds[j] = condv.back();
}
z3::expr cond(ctx, Z3_mk_and(ctx, arity, conds));
conds_matchv.push_back(cond);
conds_match[num_cases] = cond;
fmls.push_back(f(args_e) == e.value());
++num_cases;
}
if (els) {
els = f(args) == els;
switch (num_cases) {
case 0: els = forall(args, els); break;
case 1: els = forall(args, implies(!z3::expr(ctx, conds_match[0]), els)); break;
default: els = forall(args, implies(!z3::expr(ctx, Z3_mk_or(ctx, num_cases, conds_match)), els)); break;
}
fmls.push_back(els);
}
delete[] conds;
delete[] conds_match;
}
pp_tptp pp(ctx);
for (unsigned i = 0; i < fmls.size(); ++i) {
pp.collect_decls(fmls[i]);
}
pp.display_sort_decls(std::cout);
pp.display_func_decls(std::cout);
for (unsigned i = 0; i < fmls.size(); ++i) {
pp.display_axiom(std::cout, fmls[i]);
}
}
static void display_smt2(std::ostream& out) {
z3::config config;
z3::context ctx(config);
named_formulas fmls;
env env(ctx);
try {
env.parse(g_input_file, fmls);
}
catch (failure_ex& ex) {
std::cerr << ex.msg << "\n";
return;
}
z3::expr_vector asms(ctx);
size_t num_assumptions = fmls.m_formulas.size();
for (size_t i = 0; i < num_assumptions; ++i)
asms.push_back(fmls.m_formulas[i]);
for (size_t i = 0; i < asms.size(); ++i) {
z3::expr fml = asms[i];
if (fml.is_and()) {
z3::expr arg0 = fml.arg(0);
asms.set(i, arg0);
for (unsigned j = 1; j < fml.num_args(); ++j)
asms.push_back(fml.arg(j));
--i;
}
}
Z3_ast* assumptions = new Z3_ast[asms.size()];
for (size_t i = 0; i < asms.size(); ++i)
assumptions[i] = asms[i];
Z3_set_ast_print_mode(ctx, Z3_PRINT_SMTLIB_FULL);
Z3_string s =
Z3_benchmark_to_smtlib_string(
ctx,
"Benchmark generated from TPTP", // comment
0, // no logic is set
"unknown", // no status annotation
"", // attributes
static_cast(asms.size()),
assumptions,
ctx.bool_val(true));
out << s << "\n";
delete[] assumptions;
}
static void prove_tptp() {
z3::config config;
if (g_generate_proof) {
config.set("proof", true);
z3::set_param("proof", true);
}
z3::context ctx(config);
z3::solver solver(ctx);
g_solver = &solver;
g_context = &ctx;
if (g_timeout) {
// TBD overflow check
z3::set_param("timeout", g_timeout*1000);
z3::params params(ctx);
params.set("timeout", static_cast(g_timeout*1000));
solver.set(params);
}
named_formulas fmls;
env env(ctx);
try {
env.parse(g_input_file, fmls);
}
catch (failure_ex& ex) {
std::cerr << ex.msg << "\n";
std::cout << "% SZS status GaveUp\n";
return;
}
size_t num_assumptions = fmls.m_formulas.size();
z3::check_result result;
if (g_generate_core) {
z3::expr_vector assumptions(ctx);
for (size_t i = 0; i < num_assumptions; ++i) {
z3::expr pred = ctx.constant(fmls.m_names[i].c_str(), ctx.bool_sort());
z3::expr def = fmls.m_formulas[i] == pred;
solver.add(def);
assumptions.push_back(pred);
}
result = solver.check(assumptions);
}
else {
for (unsigned i = 0; i < num_assumptions; ++i) {
solver.add(fmls.m_formulas[i]);
}
result = solver.check();
}
switch(result) {
case z3::unsat:
if (g_smt2status) {
std::cout << result << "\n";
}
else if (fmls.has_conjecture()) {
std::cout << "% SZS status Theorem\n";
}
else {
std::cout << "% SZS status Unsatisfiable\n";
}
if (g_generate_proof) {
try {
std::cout << "% SZS output start Proof\n";
display_proof(ctx, fmls, solver);
std::cout << "% SZS output end Proof\n";
}
catch (failure_ex& ex) {
std::cerr << "Proof display could not be completed: " << ex.msg << "\n";
}
}
if (g_generate_core) {
z3::expr_vector core = solver.unsat_core();
std::cout << "% SZS core ";
for (unsigned i = 0; i < core.size(); ++i) {
std::cout << core[i] << " ";
}
std::cout << "\n";
}
break;
case z3::sat:
if (g_smt2status) {
std::cout << result << "\n";
}
else if (fmls.has_conjecture()) {
std::cout << "% SZS status CounterSatisfiable\n";
}
else {
std::cout << "% SZS status Satisfiable\n";
}
if (g_generate_model) {
std::cout << "% SZS output start Model\n";
display_model(ctx, solver.get_model());
std::cout << "% SZS output end Model\n";
}
break;
case z3::unknown:
if (g_smt2status) {
std::cout << result << "\n";
}
else if (!g_first_interrupt) {
std::cout << "% SZS status Interrupted\n";
}
else {
std::cout << "% SZS status GaveUp\n";
std::string reason = solver.reason_unknown();
std::cout << "% SZS reason " << reason << "\n";
}
break;
}
bool is_sat = true;
if (g_check_status &&
result != z3::unknown &&
parse_is_sat(g_input_file, is_sat)) {
if (is_sat && result == z3::unsat) {
std::cout << "BUG!! expected result is Satisfiable, returned result is Unsat\n";
}
if (!is_sat && result == z3::sat) {
std::cout << "BUG!! expected result is Unsatisfiable, returned result is Satisfiable\n";
}
}
display_statistics();
}
int main(int argc, char** argv) {
g_start_time = static_cast(clock());
signal(SIGINT, on_ctrl_c);
parse_cmd_line_args(argc, argv);
if (is_smt2_file(g_input_file)) {
display_tptp(*g_out);
}
else if (g_display_smt2) {
display_smt2(*g_out);
}
else {
try {
prove_tptp();
}
catch (z3::exception& ex) {
std::cerr << "Exception during proof: " << ex.msg() << "\n";
}
}
return 0;
}