z3-z3-4.13.0.src.api.api_algebraic.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
api_algebraic.cpp
Abstract:
Additional APIs for handling Z3 algebraic numbers encoded as
Z3_ASTs
Author:
Leonardo de Moura (leonardo) 2012-12-07
Notes:
--*/
#include "api/z3.h"
#include "api/api_log_macros.h"
#include "api/api_context.h"
#include "api/api_ast_vector.h"
#include "math/polynomial/algebraic_numbers.h"
#include "ast/expr2polynomial.h"
#include "util/cancel_eh.h"
#include "util/scoped_timer.h"
#define CHECK_IS_ALGEBRAIC(ARG, RET) { \
if (!Z3_algebraic_is_value_core(c, ARG)) { \
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); \
return RET; \
} \
}
#define CHECK_IS_ALGEBRAIC_X(ARG, RET) { \
if (!Z3_algebraic_is_value_core(c, ARG)) { \
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); \
RETURN_Z3(RET); \
} \
}
static arith_util & au(Z3_context c) {
return mk_c(c)->autil();
}
static algebraic_numbers::manager & am(Z3_context c) {
return au(c).am();
}
static bool is_rational(Z3_context c, Z3_ast a) {
return au(c).is_numeral(to_expr(a));
}
static bool is_irrational(Z3_context c, Z3_ast a) {
return au(c).is_irrational_algebraic_numeral(to_expr(a));
}
static rational get_rational(Z3_context c, Z3_ast a) {
SASSERT(is_rational(c, a));
rational r;
VERIFY(au(c).is_numeral(to_expr(a), r));
return r;
}
static algebraic_numbers::anum const & get_irrational(Z3_context c, Z3_ast a) {
SASSERT(is_irrational(c, a));
return au(c).to_irrational_algebraic_numeral(to_expr(a));
}
extern "C" {
bool Z3_algebraic_is_value_core(Z3_context c, Z3_ast a) {
api::context * _c = mk_c(c);
return
is_expr(a) &&
(_c->autil().is_numeral(to_expr(a)) ||
_c->autil().is_irrational_algebraic_numeral(to_expr(a)));
}
bool Z3_API Z3_algebraic_is_value(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_is_value(c, a);
RESET_ERROR_CODE();
return Z3_algebraic_is_value_core(c, a);
Z3_CATCH_RETURN(false);
}
bool Z3_API Z3_algebraic_is_pos(Z3_context c, Z3_ast a) {
return Z3_algebraic_sign(c, a) > 0;
}
bool Z3_API Z3_algebraic_is_neg(Z3_context c, Z3_ast a) {
return Z3_algebraic_sign(c, a) < 0;
}
bool Z3_API Z3_algebraic_is_zero(Z3_context c, Z3_ast a) {
return Z3_algebraic_sign(c, a) == 0;
}
int Z3_API Z3_algebraic_sign(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_sign(c, a);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC(a, 0);
if (is_rational(c, a)) {
rational v = get_rational(c, a);
if (v.is_pos()) return 1;
else if (v.is_neg()) return -1;
else return 0;
}
else {
algebraic_numbers::anum const & v = get_irrational(c, a);
if (am(c).is_pos(v)) return 1;
else if (am(c).is_neg(v)) return -1;
else return 0;
}
Z3_CATCH_RETURN(0);
}
#define BIN_OP(RAT_OP, IRAT_OP) \
algebraic_numbers::manager & _am = am(c); \
ast * r = 0; \
if (is_rational(c, a)) { \
rational av = get_rational(c, a); \
if (is_rational(c, b)) { \
rational bv = get_rational(c, b); \
r = au(c).mk_numeral(av RAT_OP bv, false); \
} \
else { \
algebraic_numbers::anum const & bv = get_irrational(c, b); \
scoped_anum _av(_am); \
_am.set(_av, av.to_mpq()); \
scoped_anum _r(_am); \
_am.IRAT_OP(_av, bv, _r); \
r = au(c).mk_numeral(_am, _r, false); \
} \
} \
else { \
algebraic_numbers::anum const & av = get_irrational(c, a); \
if (is_rational(c, b)) { \
rational bv = get_rational(c, b); \
scoped_anum _bv(_am); \
_am.set(_bv, bv.to_mpq()); \
scoped_anum _r(_am); \
_am.IRAT_OP(av, _bv, _r); \
r = au(c).mk_numeral(_am, _r, false); \
} \
else { \
algebraic_numbers::anum const & bv = get_irrational(c, b); \
scoped_anum _r(_am); \
_am.IRAT_OP(av, bv, _r); \
r = au(c).mk_numeral(_am, _r, false); \
} \
} \
mk_c(c)->save_ast_trail(r); \
RETURN_Z3(of_ast(r));
Z3_ast Z3_API Z3_algebraic_add(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_add(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
CHECK_IS_ALGEBRAIC_X(b, nullptr);
BIN_OP(+,add);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_algebraic_sub(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_sub(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
CHECK_IS_ALGEBRAIC_X(b, nullptr);
BIN_OP(-,sub);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_algebraic_mul(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_mul(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
CHECK_IS_ALGEBRAIC_X(b, nullptr);
BIN_OP(*,mul);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_algebraic_div(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_div(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
CHECK_IS_ALGEBRAIC_X(b, nullptr);
if ((is_rational(c, b) && get_rational(c, b).is_zero()) ||
(!is_rational(c, b) && am(c).is_zero(get_irrational(c, b)))) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
BIN_OP(/,div);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_algebraic_root(Z3_context c, Z3_ast a, unsigned k) {
Z3_TRY;
LOG_Z3_algebraic_root(c, a, k);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
if (k % 2 == 0) {
if ((is_rational(c, a) && get_rational(c, a).is_neg()) ||
(!is_rational(c, a) && am(c).is_neg(get_irrational(c, a)))) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
}
algebraic_numbers::manager & _am = am(c);
scoped_anum _r(_am);
if (is_rational(c, a)) {
scoped_anum av(_am);
_am.set(av, get_rational(c, a).to_mpq());
_am.root(av, k, _r);
}
else {
algebraic_numbers::anum const & av = get_irrational(c, a);
_am.root(av, k, _r);
}
expr * r = au(c).mk_numeral(_am, _r, false);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_ast(r));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_algebraic_power(Z3_context c, Z3_ast a, unsigned k) {
Z3_TRY;
LOG_Z3_algebraic_power(c, a, k);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC_X(a, nullptr);
algebraic_numbers::manager & _am = am(c);
scoped_anum _r(_am);
if (is_rational(c, a)) {
scoped_anum av(_am);
_am.set(av, get_rational(c, a).to_mpq());
_am.power(av, k, _r);
}
else {
algebraic_numbers::anum const & av = get_irrational(c, a);
_am.power(av, k, _r);
}
expr * r = au(c).mk_numeral(_am, _r, false);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_ast(r));
Z3_CATCH_RETURN(nullptr);
}
#define BIN_PRED(RAT_PRED, IRAT_PRED) \
algebraic_numbers::manager & _am = am(c); \
bool r; \
if (is_rational(c, a)) { \
rational av = get_rational(c, a); \
if (is_rational(c, b)) { \
rational bv = get_rational(c, b); \
r = av RAT_PRED bv; \
} \
else { \
algebraic_numbers::anum const & bv = get_irrational(c, b); \
scoped_anum _av(_am); \
_am.set(_av, av.to_mpq()); \
r = _am.IRAT_PRED(_av, bv); \
} \
} \
else { \
algebraic_numbers::anum const & av = get_irrational(c, a); \
if (is_rational(c, b)) { \
rational bv = get_rational(c, b); \
scoped_anum _bv(_am); \
_am.set(_bv, bv.to_mpq()); \
r = _am.IRAT_PRED(av, _bv); \
} \
else { \
algebraic_numbers::anum const & bv = get_irrational(c, b); \
r = _am.IRAT_PRED(av, bv); \
} \
} \
return r;
bool Z3_API Z3_algebraic_lt(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_lt(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC(a, 0);
CHECK_IS_ALGEBRAIC(b, 0);
BIN_PRED(<,lt);
Z3_CATCH_RETURN(false);
}
bool Z3_API Z3_algebraic_gt(Z3_context c, Z3_ast a, Z3_ast b) {
return Z3_algebraic_lt(c, b, a);
}
bool Z3_API Z3_algebraic_le(Z3_context c, Z3_ast a, Z3_ast b) {
return !Z3_algebraic_lt(c, b, a);
}
bool Z3_API Z3_algebraic_ge(Z3_context c, Z3_ast a, Z3_ast b) {
return !Z3_algebraic_lt(c, a, b);
}
bool Z3_API Z3_algebraic_eq(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_eq(c, a, b);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC(a, 0);
CHECK_IS_ALGEBRAIC(b, 0);
BIN_PRED(==,eq);
Z3_CATCH_RETURN(0);
}
bool Z3_API Z3_algebraic_neq(Z3_context c, Z3_ast a, Z3_ast b) {
return !Z3_algebraic_eq(c, a, b);
}
static bool to_anum_vector(Z3_context c, unsigned n, Z3_ast a[], scoped_anum_vector & as) {
algebraic_numbers::manager & _am = am(c);
scoped_anum tmp(_am);
for (unsigned i = 0; i < n; i++) {
if (is_rational(c, a[i])) {
_am.set(tmp, get_rational(c, a[i]).to_mpq());
as.push_back(tmp);
}
else if (is_irrational(c, a[i])) {
as.push_back(get_irrational(c, a[i]));
}
else {
return false;
}
}
return true;
}
class vector_var2anum : public polynomial::var2anum {
scoped_anum_vector const & m_as;
public:
vector_var2anum(scoped_anum_vector & as):m_as(as) {}
algebraic_numbers::manager & m() const override { return m_as.m(); }
bool contains(polynomial::var x) const override { return static_cast(x) < m_as.size(); }
algebraic_numbers::anum const & operator()(polynomial::var x) const override { return m_as.get(x); }
};
Z3_ast_vector Z3_API Z3_algebraic_roots(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
Z3_TRY;
LOG_Z3_algebraic_roots(c, p, n, a);
RESET_ERROR_CODE();
polynomial::manager & pm = mk_c(c)->pm();
polynomial_ref _p(pm);
polynomial::scoped_numeral d(pm.m());
expr2polynomial converter(mk_c(c)->m(), pm, nullptr, true);
if (!converter.to_polynomial(to_expr(p), _p, d) ||
static_cast(max_var(_p)) >= n + 1) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
return nullptr;
}
algebraic_numbers::manager & _am = am(c);
scoped_anum_vector as(_am);
if (!to_anum_vector(c, n, a, as)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
return nullptr;
}
scoped_anum_vector roots(_am);
{
cancel_eh eh(mk_c(c)->m().limit());
api::context::set_interruptable si(*(mk_c(c)), eh);
scoped_timer timer(mk_c(c)->params().m_timeout, &eh);
vector_var2anum v2a(as);
_am.isolate_roots(_p, v2a, roots);
}
Z3_ast_vector_ref* result = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
mk_c(c)->save_object(result);
for (unsigned i = 0; i < roots.size(); i++) {
result->m_ast_vector.push_back(au(c).mk_numeral(_am, roots.get(i), false));
}
RETURN_Z3(of_ast_vector(result));
Z3_CATCH_RETURN(nullptr);
}
int Z3_API Z3_algebraic_eval(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
Z3_TRY;
LOG_Z3_algebraic_eval(c, p, n, a);
RESET_ERROR_CODE();
polynomial::manager & pm = mk_c(c)->pm();
polynomial_ref _p(pm);
polynomial::scoped_numeral d(pm.m());
expr2polynomial converter(mk_c(c)->m(), pm, nullptr, true);
if (!converter.to_polynomial(to_expr(p), _p, d) ||
static_cast(max_var(_p)) >= n) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
return 0;
}
algebraic_numbers::manager & _am = am(c);
scoped_anum_vector as(_am);
if (!to_anum_vector(c, n, a, as)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
return 0;
}
{
cancel_eh eh(mk_c(c)->m().limit());
api::context::set_interruptable si(*(mk_c(c)), eh);
scoped_timer timer(mk_c(c)->params().m_timeout, &eh);
vector_var2anum v2a(as);
int r = _am.eval_sign_at(_p, v2a);
if (r > 0) return 1;
else if (r < 0) return -1;
else return 0;
}
Z3_CATCH_RETURN(0);
}
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_get_poly(c, a);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC(a, nullptr);
algebraic_numbers::manager & _am = am(c);
algebraic_numbers::anum const & av = get_irrational(c, a);
scoped_mpz_vector coeffs(_am.qm());
_am.get_polynomial(av, coeffs);
api::context& _c = *mk_c(c);
sort * s = _c.m().mk_sort(_c.get_arith_fid(), REAL_SORT);
Z3_ast_vector_ref* result = alloc(Z3_ast_vector_ref, _c, _c.m());
_c.save_object(result);
for (auto const& c : coeffs) {
result->m_ast_vector.push_back(_c.mk_numeral_core(c, s));
}
RETURN_Z3(of_ast_vector(result));
Z3_CATCH_RETURN(nullptr);
}
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_get_i(c, a);
RESET_ERROR_CODE();
CHECK_IS_ALGEBRAIC(a, 0);
algebraic_numbers::manager & _am = am(c);
algebraic_numbers::anum const & av = get_irrational(c, a);
return _am.get_i(av);
Z3_CATCH_RETURN(0);
}
};