z3-z3-4.13.0.src.api.api_arith.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
api_arith.cpp
Abstract:
API for arith theory
Author:
Leonardo de Moura (leonardo) 2012-02-29.
Revision History:
--*/
#include "api/z3.h"
#include "api/api_log_macros.h"
#include "api/api_context.h"
#include "api/api_util.h"
#include "ast/arith_decl_plugin.h"
#include "math/polynomial/algebraic_numbers.h"
#include
#define MK_ARITH_OP(NAME, OP) MK_NARY(NAME, mk_c(c)->get_arith_fid(), OP, SKIP)
#define MK_BINARY_ARITH_OP(NAME, OP) MK_BINARY(NAME, mk_c(c)->get_arith_fid(), OP, SKIP)
#define MK_ARITH_PRED(NAME, OP) MK_BINARY(NAME, mk_c(c)->get_arith_fid(), OP, SKIP)
extern "C" {
Z3_sort Z3_API Z3_mk_int_sort(Z3_context c) {
Z3_TRY;
LOG_Z3_mk_int_sort(c);
RESET_ERROR_CODE();
Z3_sort r = of_sort(mk_c(c)->m().mk_sort(mk_c(c)->get_arith_fid(), INT_SORT));
RETURN_Z3(r);
Z3_CATCH_RETURN(nullptr);
}
Z3_sort Z3_API Z3_mk_real_sort(Z3_context c) {
Z3_TRY;
LOG_Z3_mk_real_sort(c);
RESET_ERROR_CODE();
Z3_sort r = of_sort(mk_c(c)->m().mk_sort(mk_c(c)->get_arith_fid(), REAL_SORT));
RETURN_Z3(r);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_real_int64(Z3_context c, int64_t num, int64_t den) {
Z3_TRY;
LOG_Z3_mk_real_int64(c, num, den);
RESET_ERROR_CODE();
if (den == 0) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
sort* s = mk_c(c)->m().mk_sort(mk_c(c)->get_arith_fid(), REAL_SORT);
ast* a = mk_c(c)->mk_numeral_core(rational(num, rational::i64())/rational(den, rational::i64()), s);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_real(Z3_context c, int num, int den) {
Z3_TRY;
LOG_Z3_mk_real(c, num, den);
RESET_ERROR_CODE();
if (den == 0) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
sort* s = mk_c(c)->m().mk_sort(mk_c(c)->get_arith_fid(), REAL_SORT);
ast* a = mk_c(c)->mk_numeral_core(rational(num, den), s);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
MK_ARITH_OP(Z3_mk_add, OP_ADD);
MK_ARITH_OP(Z3_mk_mul, OP_MUL);
MK_BINARY_ARITH_OP(Z3_mk_power, OP_POWER);
MK_BINARY_ARITH_OP(Z3_mk_mod, OP_MOD);
MK_BINARY_ARITH_OP(Z3_mk_rem, OP_REM);
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast n1, Z3_ast n2) {
Z3_TRY;
LOG_Z3_mk_div(c, n1, n2);
RESET_ERROR_CODE();
decl_kind k = OP_IDIV;
sort* ty = to_expr(n1)->get_sort();
sort* real_ty = mk_c(c)->m().mk_sort(mk_c(c)->get_arith_fid(), REAL_SORT);
if (ty == real_ty) {
k = OP_DIV;
}
expr * args[2] = { to_expr(n1), to_expr(n2) };
ast* a = mk_c(c)->m().mk_app(mk_c(c)->get_arith_fid(), k, 0, nullptr, 2, args);
mk_c(c)->save_ast_trail(a);
check_sorts(c, a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
MK_ARITH_PRED(Z3_mk_lt, OP_LT);
MK_ARITH_PRED(Z3_mk_gt, OP_GT);
MK_ARITH_PRED(Z3_mk_le, OP_LE);
MK_ARITH_PRED(Z3_mk_ge, OP_GE);
Z3_ast Z3_API Z3_mk_divides(Z3_context c, Z3_ast n1, Z3_ast n2) {
Z3_TRY;
LOG_Z3_mk_divides(c, n1, n2);
RESET_ERROR_CODE();
rational val;
if (!is_expr(n1) || !mk_c(c)->autil().is_numeral(to_expr(n1), val) || !val.is_unsigned()) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
parameter p(val.get_unsigned());
expr* arg = to_expr(n2);
expr* a = mk_c(c)->m().mk_app(mk_c(c)->get_arith_fid(), OP_IDIVIDES, 1, &p, 1, &arg);
mk_c(c)->save_ast_trail(a);
check_sorts(c, a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
MK_UNARY(Z3_mk_int2real, mk_c(c)->get_arith_fid(), OP_TO_REAL, SKIP);
MK_UNARY(Z3_mk_real2int, mk_c(c)->get_arith_fid(), OP_TO_INT, SKIP);
MK_UNARY(Z3_mk_is_int, mk_c(c)->get_arith_fid(), OP_IS_INT, SKIP);
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[]) {
Z3_TRY;
LOG_Z3_mk_sub(c, num_args, args);
RESET_ERROR_CODE();
if (num_args == 0) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
expr* r = to_expr(args[0]);
for (unsigned i = 1; i < num_args; ++i) {
expr* args1[2] = { r, to_expr(args[i]) };
r = mk_c(c)->m().mk_app(mk_c(c)->get_arith_fid(), OP_SUB, 0, nullptr, 2, args1);
check_sorts(c, r);
}
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast n) {
Z3_TRY;
LOG_Z3_mk_unary_minus(c, n);
RESET_ERROR_CODE();
MK_UNARY_BODY(Z3_mk_unary_minus, mk_c(c)->get_arith_fid(), OP_UMINUS, SKIP);
Z3_CATCH_RETURN(nullptr);
}
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a) {
LOG_Z3_is_algebraic_number(c, a);
return mk_c(c)->autil().is_irrational_algebraic_numeral(to_expr(a));
}
Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision) {
Z3_TRY;
LOG_Z3_get_algebraic_number_lower(c, a, precision);
RESET_ERROR_CODE();
if (!Z3_is_algebraic_number(c, a)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
expr * e = to_expr(a);
algebraic_numbers::anum const & val = mk_c(c)->autil().to_irrational_algebraic_numeral(e);
rational l;
mk_c(c)->autil().am().get_lower(val, l, precision);
expr * r = mk_c(c)->autil().mk_numeral(l, false);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision) {
Z3_TRY;
LOG_Z3_get_algebraic_number_upper(c, a, precision);
RESET_ERROR_CODE();
if (!Z3_is_algebraic_number(c, a)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
expr * e = to_expr(a);
algebraic_numbers::anum const & val = mk_c(c)->autil().to_irrational_algebraic_numeral(e);
rational l;
mk_c(c)->autil().am().get_upper(val, l, precision);
expr * r = mk_c(c)->autil().mk_numeral(l, false);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_get_numerator(c, a);
RESET_ERROR_CODE();
rational val;
ast * _a = to_ast(a);
if (!is_expr(_a) || !mk_c(c)->autil().is_numeral(to_expr(_a), val)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
expr * r = mk_c(c)->autil().mk_numeral(numerator(val), true);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_get_denominator(c, a);
RESET_ERROR_CODE();
rational val;
ast * _a = to_ast(a);
if (!is_expr(_a) || !mk_c(c)->autil().is_numeral(to_expr(_a), val)) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
}
expr * r = mk_c(c)->autil().mk_numeral(denominator(val), true);
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r));
Z3_CATCH_RETURN(nullptr);
}
};