z3-z3-4.13.0.src.api.dotnet.Expr.cs Maven / Gradle / Ivy
The newest version!
/*++
Copyright () 2012 Microsoft Corporation
Module Name:
Expr.cs
Abstract:
Z3 Managed API: Expressions
Author:
Christoph Wintersteiger (cwinter) 2012-03-20
Notes:
--*/
using System.Diagnostics;
using System;
using System.Linq;
namespace Microsoft.Z3
{
///
/// Expressions are terms.
///
public class Expr : AST
{
///
/// Returns a simplified version of the expression.
///
/// A set of parameters to configure the simplifier
///
public Expr Simplify(Params p = null)
{
if (p == null)
return Expr.Create(Context, Native.Z3_simplify(Context.nCtx, NativeObject));
else
return Expr.Create(Context, Native.Z3_simplify_ex(Context.nCtx, NativeObject, p.NativeObject));
}
///
/// The function declaration of the function that is applied in this expression.
///
public FuncDecl FuncDecl
{
get
{
return new FuncDecl(Context, Native.Z3_get_app_decl(Context.nCtx, NativeObject));
}
}
///
/// Indicates whether the expression is the true or false expression
/// or something else (Z3_L_UNDEF).
///
public Z3_lbool BoolValue
{
get { return (Z3_lbool)Native.Z3_get_bool_value(Context.nCtx, NativeObject); }
}
///
/// The number of arguments of the expression.
///
public uint NumArgs
{
get { return Native.Z3_get_app_num_args(Context.nCtx, NativeObject); }
}
///
/// The arguments of the expression.
///
public Expr[] Args
{
get
{
uint n = NumArgs;
Expr[] res = new Expr[n];
for (uint i = 0; i < n; i++)
res[i] = Expr.Create(Context, Native.Z3_get_app_arg(Context.nCtx, NativeObject, i));
return res;
}
}
///
/// The i'th argument of the expression.
///
public Expr Arg(uint i)
{
return Expr.Create(Context, Native.Z3_get_app_arg(Context.nCtx, NativeObject, i));
}
///
/// Update the arguments of the expression using the arguments
/// The number of new arguments should coincide with the current number of arguments.
///
public void Update(Expr[] args)
{
Debug.Assert(args != null);
Debug.Assert(args.All(a => a != null));
Context.CheckContextMatch(args);
if (IsApp && args.Length != NumArgs)
throw new Z3Exception("Number of arguments does not match");
NativeObject = Native.Z3_update_term(Context.nCtx, NativeObject, (uint)args.Length, Expr.ArrayToNative(args));
}
///
/// Substitute every occurrence of from[i] in the expression with to[i] , for i smaller than num_exprs .
///
///
/// The result is the new expression. The arrays from and to must have size num_exprs .
/// For every i smaller than num_exprs , we must have that
/// sort of from[i] must be equal to sort of to[i] .
///
public Expr Substitute(Expr[] from, Expr[] to)
{
Debug.Assert(from != null);
Debug.Assert(to != null);
Debug.Assert(from.All(f => f != null));
Debug.Assert(to.All(t => t != null));
Context.CheckContextMatch(from);
Context.CheckContextMatch(to);
if (from.Length != to.Length)
throw new Z3Exception("Argument sizes do not match");
return Expr.Create(Context, Native.Z3_substitute(Context.nCtx, NativeObject, (uint)from.Length, Expr.ArrayToNative(from), Expr.ArrayToNative(to)));
}
///
/// Substitute every occurrence of from in the expression with to .
///
///
public Expr Substitute(Expr from, Expr to)
{
Debug.Assert(from != null);
Debug.Assert(to != null);
return Substitute(new Expr[] { from }, new Expr[] { to });
}
///
/// Substitute the free variables in the expression with the expressions in
///
///
/// For every i smaller than num_exprs , the variable with de-Bruijn index i is replaced with term to[i] .
///
public Expr SubstituteVars(Expr[] to)
{
Debug.Assert(to != null);
Debug.Assert(to.All(t => t != null));
Context.CheckContextMatch(to);
return Expr.Create(Context, Native.Z3_substitute_vars(Context.nCtx, NativeObject, (uint)to.Length, Expr.ArrayToNative(to)));
}
///
/// Translates (copies) the term to the Context .
///
/// A context
/// A copy of the term which is associated with
new public Expr Translate(Context ctx)
{
return (Expr)base.Translate(ctx);
}
///
/// Create a duplicate of expression.
/// This feature is to allow extending the life-time of expressions that were passed down as arguments
/// by the user propagator callbacks. By default the life-time of arguments to callbacks is within the
/// callback only.
///
public Expr Dup() {
return Expr.Create(Context, NativeObject);
}
///
/// Returns a string representation of the expression.
///
public override string ToString()
{
return base.ToString();
}
///
/// Indicates whether the term is a numeral
///
public bool IsNumeral
{
get { return Native.Z3_is_numeral_ast(Context.nCtx, NativeObject) != 0; }
}
///
/// Indicates whether the term is well-sorted.
///
/// True if the term is well-sorted, false otherwise.
public bool IsWellSorted
{
get { return Native.Z3_is_well_sorted(Context.nCtx, NativeObject) != 0; }
}
///
/// The Sort of the term.
///
public Sort Sort
{
get
{
return Sort.Create(Context, Native.Z3_get_sort(Context.nCtx, NativeObject));
}
}
#region Constants
///
/// Indicates whether the term represents a constant.
///
public bool IsConst
{
get { return IsApp && NumArgs == 0 && FuncDecl.DomainSize == 0; }
}
#endregion
#region Integer Numerals
///
/// Indicates whether the term is an integer numeral.
///
public bool IsIntNum
{
get { return IsNumeral && IsInt; }
}
#endregion
#region Real Numerals
///
/// Indicates whether the term is a real numeral.
///
public bool IsRatNum
{
get { return IsNumeral && IsReal; }
}
#endregion
#region Algebraic Numbers
///
/// Indicates whether the term is an algebraic number
///
public bool IsAlgebraicNumber
{
get { return 0 != Native.Z3_is_algebraic_number(Context.nCtx, NativeObject); }
}
#endregion
#region Term Kind Tests
#region Boolean Terms
///
/// Indicates whether the term has Boolean sort.
///
public bool IsBool
{
get
{
return (IsExpr &&
Native.Z3_is_eq_sort(Context.nCtx,
Native.Z3_mk_bool_sort(Context.nCtx),
Native.Z3_get_sort(Context.nCtx, NativeObject)) != 0);
}
}
///
/// Indicates whether the term is the constant true.
///
public bool IsTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TRUE; } }
///
/// Indicates whether the term is the constant false.
///
public bool IsFalse { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FALSE; } }
///
/// Indicates whether the term is an equality predicate.
///
public bool IsEq { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EQ; } }
///
/// Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).
///
public bool IsDistinct { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DISTINCT; } }
///
/// Indicates whether the term is a ternary if-then-else term
///
public bool IsITE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ITE; } }
///
/// Indicates whether the term is an n-ary conjunction
///
public bool IsAnd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AND; } }
///
/// Indicates whether the term is an n-ary disjunction
///
public bool IsOr { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OR; } }
///
/// Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)
///
public bool IsIff { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IFF; } }
///
/// Indicates whether the term is an exclusive or
///
public bool IsXor { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR; } }
///
/// Indicates whether the term is a negation
///
public bool IsNot { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT; } }
///
/// Indicates whether the term is an implication
///
public bool IsImplies { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IMPLIES; } }
///
/// Indicates whether the term is at-most
///
public bool IsAtMost { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_AT_MOST; } }
///
/// Retrieve bound of at-most
///
public uint AtMostBound { get { Debug.Assert(IsAtMost); return (uint)FuncDecl.Parameters[0].Int; } }
///
/// Indicates whether the term is at-least
///
public bool IsAtLeast { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_AT_LEAST; } }
///
/// Retrieve bound of at-least
///
public uint AtLeastBound { get { Debug.Assert(IsAtLeast); return (uint)FuncDecl.Parameters[0].Int; } }
///
/// Indicates whether the term is pbeq
///
public bool IsPbEq { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_EQ; } }
///
/// Indicates whether the term is pble
///
public bool IsPbLe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_LE; } }
///
/// Indicates whether the term is pbge
///
public bool IsPbGe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PB_GE; } }
#endregion
#region Arithmetic Terms
///
/// Indicates whether the term is of integer sort.
///
public bool IsInt
{
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_INT_SORT; }
}
///
/// Indicates whether the term is of sort real.
///
public bool IsReal
{
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_REAL_SORT; }
}
///
/// Indicates whether the term is an arithmetic numeral.
///
public bool IsArithmeticNumeral { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ANUM; } }
///
/// Indicates whether the term is a less-than-or-equal
///
public bool IsLE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LE; } }
///
/// Indicates whether the term is a greater-than-or-equal
///
public bool IsGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GE; } }
///
/// Indicates whether the term is a less-than
///
public bool IsLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LT; } }
///
/// Indicates whether the term is a greater-than
///
public bool IsGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GT; } }
///
/// Indicates whether the term is addition (binary)
///
public bool IsAdd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ADD; } }
///
/// Indicates whether the term is subtraction (binary)
///
public bool IsSub { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SUB; } }
///
/// Indicates whether the term is a unary minus
///
public bool IsUMinus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UMINUS; } }
///
/// Indicates whether the term is multiplication (binary)
///
public bool IsMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MUL; } }
///
/// Indicates whether the term is division (binary)
///
public bool IsDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DIV; } }
///
/// Indicates whether the term is integer division (binary)
///
public bool IsIDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IDIV; } }
///
/// Indicates whether the term is remainder (binary)
///
public bool IsRemainder { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REM; } }
///
/// Indicates whether the term is modulus (binary)
///
public bool IsModulus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MOD; } }
///
/// Indicates whether the term is a coercion of integer to real (unary)
///
public bool IsIntToReal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_REAL; } }
///
/// Indicates whether the term is a coercion of real to integer (unary)
///
public bool IsRealToInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_INT; } }
///
/// Indicates whether the term is a check that tests whether a real is integral (unary)
///
public bool IsRealIsInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IS_INT; } }
#endregion
#region Array Terms
///
/// Indicates whether the term is of an array sort.
///
public bool IsArray
{
get
{
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
== Z3_sort_kind.Z3_ARRAY_SORT);
}
}
///
/// Indicates whether the term is an array store.
///
/// It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
/// Array store takes at least 3 arguments.
public bool IsStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }
///
/// Indicates whether the term is an array select.
///
public bool IsSelect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT; } }
///
/// Indicates whether the term is a constant array.
///
/// For example, select(const(v),i) = v holds for every v and i. The function is unary.
public bool IsConstantArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONST_ARRAY; } }
///
/// Indicates whether the term is a default array.
///
/// For example default(const(v)) = v. The function is unary.
public bool IsDefaultArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT; } }
///
/// Indicates whether the term is an array map.
///
/// It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.
public bool IsArrayMap { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_MAP; } }
///
/// Indicates whether the term is an as-array term.
///
/// An as-array term is n array value that behaves as the function graph of the
/// function passed as parameter.
public bool IsAsArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }
#endregion
#region Set Terms
///
/// Indicates whether the term is set union
///
public bool IsSetUnion { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_UNION; } }
///
/// Indicates whether the term is set intersection
///
public bool IsSetIntersect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_INTERSECT; } }
///
/// Indicates whether the term is set difference
///
public bool IsSetDifference { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_DIFFERENCE; } }
///
/// Indicates whether the term is set complement
///
public bool IsSetComplement { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_COMPLEMENT; } }
///
/// Indicates whether the term is set subset
///
public bool IsSetSubset { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_SUBSET; } }
#endregion
#region Bit-vector terms
///
/// Indicates whether the terms is of bit-vector sort.
///
public bool IsBV
{
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_BV_SORT; }
}
///
/// Indicates whether the term is a bit-vector numeral
///
public bool IsBVNumeral { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNUM; } }
///
/// Indicates whether the term is a one-bit bit-vector with value one
///
public bool IsBVBitOne { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT1; } }
///
/// Indicates whether the term is a one-bit bit-vector with value zero
///
public bool IsBVBitZero { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT0; } }
///
/// Indicates whether the term is a bit-vector unary minus
///
public bool IsBVUMinus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNEG; } }
///
/// Indicates whether the term is a bit-vector addition (binary)
///
public bool IsBVAdd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BADD; } }
///
/// Indicates whether the term is a bit-vector subtraction (binary)
///
public bool IsBVSub { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSUB; } }
///
/// Indicates whether the term is a bit-vector multiplication (binary)
///
public bool IsBVMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BMUL; } }
///
/// Indicates whether the term is a bit-vector signed division (binary)
///
public bool IsBVSDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV; } }
///
/// Indicates whether the term is a bit-vector unsigned division (binary)
///
public bool IsBVUDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV; } }
///
/// Indicates whether the term is a bit-vector signed remainder (binary)
///
public bool IsBVSRem { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM; } }
///
/// Indicates whether the term is a bit-vector unsigned remainder (binary)
///
public bool IsBVURem { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM; } }
///
/// Indicates whether the term is a bit-vector signed modulus
///
public bool IsBVSMod { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD; } }
///
/// Indicates whether the term is a bit-vector signed division by zero
///
internal bool IsBVSDiv0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV0; } }
///
/// Indicates whether the term is a bit-vector unsigned division by zero
///
internal bool IsBVUDiv0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV0; } }
///
/// Indicates whether the term is a bit-vector signed remainder by zero
///
internal bool IsBVSRem0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM0; } }
///
/// Indicates whether the term is a bit-vector unsigned remainder by zero
///
internal bool IsBVURem0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM0; } }
///
/// Indicates whether the term is a bit-vector signed modulus by zero
///
internal bool IsBVSMod0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD0; } }
///
/// Indicates whether the term is an unsigned bit-vector less-than-or-equal
///
public bool IsBVULE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULEQ; } }
///
/// Indicates whether the term is a signed bit-vector less-than-or-equal
///
public bool IsBVSLE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLEQ; } }
///
/// Indicates whether the term is an unsigned bit-vector greater-than-or-equal
///
public bool IsBVUGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGEQ; } }
///
/// Indicates whether the term is a signed bit-vector greater-than-or-equal
///
public bool IsBVSGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGEQ; } }
///
/// Indicates whether the term is an unsigned bit-vector less-than
///
public bool IsBVULT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULT; } }
///
/// Indicates whether the term is a signed bit-vector less-than
///
public bool IsBVSLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLT; } }
///
/// Indicates whether the term is an unsigned bit-vector greater-than
///
public bool IsBVUGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGT; } }
///
/// Indicates whether the term is a signed bit-vector greater-than
///
public bool IsBVSGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGT; } }
///
/// Indicates whether the term is a bit-wise AND
///
public bool IsBVAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BAND; } }
///
/// Indicates whether the term is a bit-wise OR
///
public bool IsBVOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BOR; } }
///
/// Indicates whether the term is a bit-wise NOT
///
public bool IsBVNOT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOT; } }
///
/// Indicates whether the term is a bit-wise XOR
///
public bool IsBVXOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXOR; } }
///
/// Indicates whether the term is a bit-wise NAND
///
public bool IsBVNAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNAND; } }
///
/// Indicates whether the term is a bit-wise NOR
///
public bool IsBVNOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOR; } }
///
/// Indicates whether the term is a bit-wise XNOR
///
public bool IsBVXNOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXNOR; } }
///
/// Indicates whether the term is a bit-vector concatenation (binary)
///
public bool IsBVConcat { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONCAT; } }
///
/// Indicates whether the term is a bit-vector sign extension
///
public bool IsBVSignExtension { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SIGN_EXT; } }
///
/// Indicates whether the term is a bit-vector zero extension
///
public bool IsBVZeroExtension { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ZERO_EXT; } }
///
/// Indicates whether the term is a bit-vector extraction
///
public bool IsBVExtract { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXTRACT; } }
///
/// Indicates whether the term is a bit-vector repetition
///
public bool IsBVRepeat { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REPEAT; } }
///
/// Indicates whether the term is a bit-vector reduce OR
///
public bool IsBVReduceOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDOR; } }
///
/// Indicates whether the term is a bit-vector reduce AND
///
public bool IsBVReduceAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDAND; } }
///
/// Indicates whether the term is a bit-vector comparison
///
public bool IsBVComp { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BCOMP; } }
///
/// Indicates whether the term is a bit-vector shift left
///
public bool IsBVShiftLeft { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSHL; } }
///
/// Indicates whether the term is a bit-vector logical shift right
///
public bool IsBVShiftRightLogical { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BLSHR; } }
///
/// Indicates whether the term is a bit-vector arithmetic shift left
///
public bool IsBVShiftRightArithmetic { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BASHR; } }
///
/// Indicates whether the term is a bit-vector rotate left
///
public bool IsBVRotateLeft { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_LEFT; } }
///
/// Indicates whether the term is a bit-vector rotate right
///
public bool IsBVRotateRight { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_RIGHT; } }
///
/// Indicates whether the term is a bit-vector rotate left (extended)
///
/// Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.
public bool IsBVRotateLeftExtended { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT; } }
///
/// Indicates whether the term is a bit-vector rotate right (extended)
///
/// Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.
public bool IsBVRotateRightExtended { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT; } }
///
/// Indicates whether the term is a coercion from integer to bit-vector
///
/// This function is not supported by the decision procedures. Only the most
/// rudimentary simplification rules are applied to this function.
public bool IsIntToBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }
///
/// Indicates whether the term is a coercion from bit-vector to integer
///
/// This function is not supported by the decision procedures. Only the most
/// rudimentary simplification rules are applied to this function.
public bool IsBVToInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }
///
/// Indicates whether the term is a bit-vector carry
///
/// Compute the carry bit in a full-adder. The meaning is given by the
/// equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))
public bool IsBVCarry { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }
///
/// Indicates whether the term is a bit-vector ternary XOR
///
/// The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)
public bool IsBVXOR3 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR3; } }
#endregion
#region Labels
///
/// Indicates whether the term is a label (used by the Boogie Verification condition generator).
///
/// The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.
public bool IsLabel { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }
///
/// Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
///
/// A label literal has a set of string parameters. It takes no arguments.
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
#endregion
#region Sequences and Strings
///
/// Check whether expression is a string constant.
///
/// a Boolean
public bool IsString { get { return IsApp && Native.Z3_is_string(Context.nCtx, NativeObject) != 0; } }
///
/// Retrieve string corresponding to string constant.
///
/// the expression should be a string constant, (IsString should be true).
public string String { get { return Native.Z3_get_string(Context.nCtx, NativeObject); } }
///
/// Check whether expression is a concatenation.
///
/// a Boolean
public bool IsConcat { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_CONCAT; } }
///
/// Check whether expression is a prefix.
///
/// a Boolean
public bool IsPrefix { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_PREFIX; } }
///
/// Check whether expression is a suffix.
///
/// a Boolean
public bool IsSuffix { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_SUFFIX; } }
///
/// Check whether expression is a contains.
///
/// a Boolean
public bool IsContains { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_CONTAINS; } }
///
/// Check whether expression is an extract.
///
/// a Boolean
public bool IsExtract { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_EXTRACT; } }
///
/// Check whether expression is a replace.
///
/// a Boolean
public bool IsReplace { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_REPLACE; } }
///
/// Check whether expression is an at.
///
/// a Boolean
public bool IsAt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_AT; } }
///
/// Check whether expression is a sequence length.
///
/// a Boolean
public bool IsLength { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_LENGTH; } }
///
/// Check whether expression is a sequence index.
///
/// a Boolean
public bool IsIndex { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SEQ_INDEX; } }
#endregion
#region Proof Terms
///
/// Indicates whether the term is a binary equivalence modulo namings.
///
/// This binary predicate is used in proof terms.
/// It captures equisatisfiability and equivalence modulo renamings.
public bool IsOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OEQ; } }
///
/// Indicates whether the term is a Proof for the expression 'true'.
///
public bool IsProofTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRUE; } }
///
/// Indicates whether the term is a proof for a fact asserted by the user.
///
public bool IsProofAsserted { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ASSERTED; } }
///
/// Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.
///
public bool IsProofGoal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_GOAL; } }
///
/// Indicates whether the term is proof via modus ponens
///
///
/// Given a proof for p and a proof for (implies p q), produces a proof for q.
/// T1: p
/// T2: (implies p q)
/// [mp T1 T2]: q
/// The second antecedents may also be a proof for (iff p q).
public bool IsProofModusPonens { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS; } }
///
/// Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
///
/// This proof object has no antecedents.
/// The only reflexive relations that are used are
/// equivalence modulo namings, equality and equivalence.
/// That is, R is either '~', '=' or 'iff'.
public bool IsProofReflexivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }
///
/// Indicates whether the term is proof by symmetricity of a relation
///
///
/// Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
/// T1: (R t s)
/// [symmetry T1]: (R s t)
/// T1 is the antecedent of this proof object.
///
public bool IsProofSymmetry { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SYMMETRY; } }
///
/// Indicates whether the term is a proof by transitivity of a relation
///
///
/// Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
/// for (R t u).
/// T1: (R t s)
/// T2: (R s u)
/// [trans T1 T2]: (R t u)
///
public bool IsProofTransitivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY; } }
///
/// Indicates whether the term is a proof by condensed transitivity of a relation
///
///
/// Condensed transitivity proof.
/// It combines several symmetry and transitivity proofs.
/// Example:
/// T1: (R a b)
/// T2: (R c b)
/// T3: (R c d)
/// [trans* T1 T2 T3]: (R a d)
/// R must be a symmetric and transitive relation.
///
/// Assuming that this proof object is a proof for (R s t), then
/// a proof checker must check if it is possible to prove (R s t)
/// using the antecedents, symmetry and transitivity. That is,
/// if there is a path from s to t, if we view every
/// antecedent (R a b) as an edge between a and b.
///
public bool IsProofTransitivityStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR; } }
///
/// Indicates whether the term is a monotonicity proof object.
///
///
/// T1: (R t_1 s_1)
/// ...
/// Tn: (R t_n s_n)
/// [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
/// Remark: if t_i == s_i, then the antecedent Ti is suppressed.
/// That is, reflexivity proofs are suppressed to save space.
///
public bool IsProofMonotonicity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
///
/// Indicates whether the term is a quant-intro proof
///
///
/// Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
/// T1: (~ p q)
/// [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
///
public bool IsProofQuantIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }
///
/// Indicates whether the term is a distributivity proof object.
///
///
/// Given that f (= or) distributes over g (= and), produces a proof for
/// (= (f a (g c d))
/// (g (f a c) (f a d)))
/// If f and g are associative, this proof also justifies the following equality:
/// (= (f (g a b) (g c d))
/// (g (f a c) (f a d) (f b c) (f b d)))
/// where each f and g can have arbitrary number of arguments.
///
/// This proof object has no antecedents.
/// Remark. This rule is used by the CNF conversion pass and
/// instantiated by f = or, and g = and.
///
public bool IsProofDistributivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }
///
/// Indicates whether the term is a proof by elimination of AND
///
///
/// Given a proof for (and l_1 ... l_n), produces a proof for l_i
/// T1: (and l_1 ... l_n)
/// [and-elim T1]: l_i
///
public bool IsProofAndElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }
///
/// Indicates whether the term is a proof by elimination of not-or
///
///
/// Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
/// T1: (not (or l_1 ... l_n))
/// [not-or-elim T1]: (not l_i)
///
public bool IsProofOrElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }
///
/// Indicates whether the term is a proof by rewriting
///
///
/// A proof for a local rewriting step (= t s).
/// The head function symbol of t is interpreted.
///
/// This proof object has no antecedents.
/// The conclusion of a rewrite rule is either an equality (= t s),
/// an equivalence (iff t s), or equi-satisfiability (~ t s).
/// Remark: if f is bool, then = is iff.
///
/// Examples:
/// (= (+ x 0) x)
/// (= (+ x 1 2) (+ 3 x))
/// (iff (or x false) x)
///
public bool IsProofRewrite { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }
///
/// Indicates whether the term is a proof by rewriting
///
///
/// A proof for rewriting an expression t into an expression s.
/// This proof object can have n antecedents.
/// The antecedents are proofs for equalities used as substitution rules.
/// The object is used in a few cases:
/// - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
/// - When converting bit-vectors to Booleans (BIT2BOOL=true)
///
public bool IsProofRewriteStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }
///
/// Indicates whether the term is a proof for pulling quantifiers out.
///
///
/// A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
///
public bool IsProofPullQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }
///
/// Indicates whether the term is a proof for pushing quantifiers in.
///
///
/// A proof for:
/// (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
/// (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
/// ...
/// (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
/// This proof object has no antecedents
///
public bool IsProofPushQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }
///
/// Indicates whether the term is a proof for elimination of unused variables.
///
///
/// A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
/// (forall (x_1 ... x_n) p[x_1 ... x_n]))
///
/// It is used to justify the elimination of unused variables.
/// This proof object has no antecedents.
///
public bool IsProofElimUnusedVars { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS; } }
///
/// Indicates whether the term is a proof for destructive equality resolution
///
///
/// A proof for destructive equality resolution:
/// (iff (forall (x) (or (not (= x t)) P[x])) P[t])
/// if x does not occur in t.
///
/// This proof object has no antecedents.
///
/// Several variables can be eliminated simultaneously.
///
public bool IsProofDER { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }
///
/// Indicates whether the term is a proof for quantifier instantiation
///
///
/// A proof of (or (not (forall (x) (P x))) (P a))
///
public bool IsProofQuantInst { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }
///
/// Indicates whether the term is a hypothesis marker.
///
/// Mark a hypothesis in a natural deduction style proof.
public bool IsProofHypothesis { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }
///
/// Indicates whether the term is a proof by lemma
///
///
/// T1: false
/// [lemma T1]: (or (not l_1) ... (not l_n))
///
/// This proof object has one antecedent: a hypothetical proof for false.
/// It converts the proof in a proof for (or (not l_1) ... (not l_n)),
/// when T1 contains the hypotheses: l_1, ..., l_n.
///
public bool IsProofLemma { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_LEMMA; } }
///
/// Indicates whether the term is a proof by unit resolution
///
///
/// T1: (or l_1 ... l_n l_1' ... l_m')
/// T2: (not l_1)
/// ...
/// T(n+1): (not l_n)
/// [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
///
public bool IsProofUnitResolution { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION; } }
///
/// Indicates whether the term is a proof by iff-true
///
///
/// T1: p
/// [iff-true T1]: (iff p true)
///
public bool IsProofIFFTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_TRUE; } }
///
/// Indicates whether the term is a proof by iff-false
///
///
/// T1: (not p)
/// [iff-false T1]: (iff p false)
///
public bool IsProofIFFFalse { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_FALSE; } }
///
/// Indicates whether the term is a proof by commutativity
///
///
/// [comm]: (= (f a b) (f b a))
///
/// f is a commutative operator.
///
/// This proof object has no antecedents.
/// Remark: if f is bool, then = is iff.
///
public bool IsProofCommutativity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY; } }
///
/// Indicates whether the term is a proof for Tseitin-like axioms
///
///
/// Proof object used to justify Tseitin's like axioms:
///
/// (or (not (and p q)) p)
/// (or (not (and p q)) q)
/// (or (not (and p q r)) p)
/// (or (not (and p q r)) q)
/// (or (not (and p q r)) r)
/// ...
/// (or (and p q) (not p) (not q))
/// (or (not (or p q)) p q)
/// (or (or p q) (not p))
/// (or (or p q) (not q))
/// (or (not (iff p q)) (not p) q)
/// (or (not (iff p q)) p (not q))
/// (or (iff p q) (not p) (not q))
/// (or (iff p q) p q)
/// (or (not (ite a b c)) (not a) b)
/// (or (not (ite a b c)) a c)
/// (or (ite a b c) (not a) (not b))
/// (or (ite a b c) a (not c))
/// (or (not (not a)) (not a))
/// (or (not a) a)
///
/// This proof object has no antecedents.
/// Note: all axioms are propositional tautologies.
/// Note also that 'and' and 'or' can take multiple arguments.
/// You can recover the propositional tautologies by
/// unfolding the Boolean connectives in the axioms a small
/// bounded number of steps (=3).
///
public bool IsProofDefAxiom { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM; } }
///
/// Indicates whether the term is a proof for introduction of a name
///
///
/// Introduces a name for a formula/term.
/// Suppose e is an expression with free variables x, and def-intro
/// introduces the name n(x). The possible cases are:
///
/// When e is of Boolean type:
/// [def-intro]: (and (or n (not e)) (or (not n) e))
///
/// or:
/// [def-intro]: (or (not n) e)
/// when e only occurs positively.
///
/// When e is of the form (ite cond th el):
/// [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
///
/// Otherwise:
/// [def-intro]: (= n e)
///
public bool IsProofDefIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }
///
/// Indicates whether the term is a proof for application of a definition
///
///
/// [apply-def T1]: F ~ n
/// F is 'equivalent' to n, given that T1 is a proof that
/// n is a name for F.
///
public bool IsProofApplyDef { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_APPLY_DEF; } }
///
/// Indicates whether the term is a proof iff-oeq
///
///
/// T1: (iff p q)
/// [iff~ T1]: (~ p q)
///
public bool IsProofIFFOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_OEQ; } }
///
/// Indicates whether the term is a proof for a positive NNF step
///
///
/// Proof for a (positive) NNF step. Example:
///
/// T1: (not s_1) ~ r_1
/// T2: (not s_2) ~ r_2
/// T3: s_1 ~ r_1'
/// T4: s_2 ~ r_2'
/// [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
/// (and (or r_1 r_2') (or r_1' r_2)))
///
/// The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
/// (a) When creating the NNF of a positive force quantifier.
/// The quantifier is retained (unless the bound variables are eliminated).
/// Example
/// T1: q ~ q_new
/// [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
///
/// (b) When recursively creating NNF over Boolean formulas, where the top-level
/// connective is changed during NNF conversion. The relevant Boolean connectives
/// for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
/// NNF_NEG furthermore handles the case where negation is pushed
/// over Boolean connectives 'and' and 'or'.
///
public bool IsProofNNFPos { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_POS; } }
///
/// Indicates whether the term is a proof for a negative NNF step
///
///
/// Proof for a (negative) NNF step. Examples:
///
/// T1: (not s_1) ~ r_1
/// ...
/// Tn: (not s_n) ~ r_n
/// [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
/// and
/// T1: (not s_1) ~ r_1
/// ...
/// Tn: (not s_n) ~ r_n
/// [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
/// and
/// T1: (not s_1) ~ r_1
/// T2: (not s_2) ~ r_2
/// T3: s_1 ~ r_1'
/// T4: s_2 ~ r_2'
/// [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
/// (and (or r_1 r_2) (or r_1' r_2')))
///
public bool IsProofNNFNeg { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }
///
/// Indicates whether the term is a proof for a Skolemization step
///
///
/// Proof for:
///
/// [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
/// [sk]: (~ (exists x (p x y)) (p (sk y) y))
///
/// This proof object has no antecedents.
///
public bool IsProofSkolemize { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }
///
/// Indicates whether the term is a proof by modus ponens for equi-satisfiability.
///
///
/// Modus ponens style rule for equi-satisfiability.
/// T1: p
/// T2: (~ p q)
/// [mp~ T1 T2]: q
///
public bool IsProofModusPonensOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }
///
/// Indicates whether the term is a proof for theory lemma
///
///
/// Generic proof for theory lemmas.
///
/// The theory lemma function comes with one or more parameters.
/// The first parameter indicates the name of the theory.
/// For the theory of arithmetic, additional parameters provide hints for
/// checking the theory lemma.
/// The hints for arithmetic are:
/// - farkas - followed by rational coefficients. Multiply the coefficients to the
/// inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
/// - triangle-eq - Indicates a lemma related to the equivalence:
/// (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
/// - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
///
public bool IsProofTheoryLemma { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TH_LEMMA; } }
#endregion
#region Relational Terms
///
/// Indicates whether the term is of relation sort.
///
public bool IsRelation
{
get
{
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
== (uint)Z3_sort_kind.Z3_RELATION_SORT);
}
}
///
/// Indicates whether the term is an relation store
///
///
/// Insert a record into a relation.
/// The function takes n+1 arguments, where the first argument is the relation and the remaining n elements
/// correspond to the n columns of the relation.
///
public bool IsRelationStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }
///
/// Indicates whether the term is an empty relation
///
public bool IsEmptyRelation { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_EMPTY; } }
///
/// Indicates whether the term is a test for the emptiness of a relation
///
public bool IsIsEmptyRelation { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_IS_EMPTY; } }
///
/// Indicates whether the term is a relational join
///
public bool IsRelationalJoin { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }
///
/// Indicates whether the term is the union or convex hull of two relations.
///
/// The function takes two arguments.
public bool IsRelationUnion { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }
///
/// Indicates whether the term is the widening of two relations
///
/// The function takes two arguments.
public bool IsRelationWiden { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_WIDEN; } }
///
/// Indicates whether the term is a projection of columns (provided as numbers in the parameters).
///
/// The function takes one argument.
public bool IsRelationProject { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_PROJECT; } }
///
/// Indicates whether the term is a relation filter
///
///
/// Filter (restrict) a relation with respect to a predicate.
/// The first argument is a relation.
/// The second argument is a predicate with free de-Bruijn indices
/// corresponding to the columns of the relation.
/// So the first column in the relation has index 0.
///
public bool IsRelationFilter { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_FILTER; } }
///
/// Indicates whether the term is an intersection of a relation with the negation of another.
///
///
/// Intersect the first relation with respect to negation
/// of the second relation (the function takes two arguments).
/// Logically, the specification can be described by a function
///
/// target = filter_by_negation(pos, neg, columns)
///
/// where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
/// target are elements in x in pos, such that there is no y in neg that agrees with
/// x on the columns c1, d1, .., cN, dN.
///
public bool IsRelationNegationFilter { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER; } }
///
/// Indicates whether the term is the renaming of a column in a relation
///
///
/// The function takes one argument.
/// The parameters contain the renaming as a cycle.
///
public bool IsRelationRename { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_RENAME; } }
///
/// Indicates whether the term is the complement of a relation
///
public bool IsRelationComplement { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_COMPLEMENT; } }
///
/// Indicates whether the term is a relational select
///
///
/// Check if a record is an element of the relation.
/// The function takes n+1 arguments, where the first argument is a relation,
/// and the remaining n arguments correspond to a record.
///
public bool IsRelationSelect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_SELECT; } }
///
/// Indicates whether the term is a relational clone (copy)
///
///
/// Create a fresh copy (clone) of a relation.
/// The function is logically the identity, but
/// in the context of a register machine allows
/// for terms of kind
/// to perform destructive updates to the first argument.
///
public bool IsRelationClone { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }
#endregion
#region Finite domain terms
///
/// Indicates whether the term is of an array sort.
///
public bool IsFiniteDomain
{
get
{
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_FINITE_DOMAIN_SORT);
}
}
///
/// Indicates whether the term is a less than predicate over a finite domain.
///
public bool IsFiniteDomainLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FD_LT; } }
#endregion
#region Floating-point terms
///
/// Indicates whether the terms is of floating-point sort.
///
public bool IsFP
{
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_FLOATING_POINT_SORT; }
}
///
/// Indicates whether the terms is of floating-point rounding mode sort.
///
public bool IsFPRM
{
get { return Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject)) == (uint)Z3_sort_kind.Z3_ROUNDING_MODE_SORT; }
}
///
/// Indicates whether the term is a floating-point numeral
///
public bool IsFPNumeral { get { return IsFP && IsNumeral; } }
///
/// Indicates whether the term is a floating-point rounding mode numeral
///
public bool IsFPRMNumeral { get { return IsFPRM && IsNumeral; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
///
public bool IsFPRMRoundNearestTiesToEven{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
///
public bool IsFPRMRoundNearestTiesToAway{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardNegative
///
public bool IsFPRMRoundTowardNegative{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardPositive
///
public bool IsFPRMRoundTowardPositive{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardZero
///
public bool IsFPRMRoundTowardZero{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
///
public bool IsFPRMExprRNE{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
///
public bool IsFPRMExprRNA { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardNegative
///
public bool IsFPRMExprRTN { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardPositive
///
public bool IsFPRMExprRTP { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE; } }
///
/// Indicates whether the term is the floating-point rounding numeral roundTowardZero
///
public bool IsFPRMExprRTZ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO; } }
///
/// Indicates whether the term is a floating-point rounding mode numeral
///
public bool IsFPRMExpr {
get {
return IsApp &&
(FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN ||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE ||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_NEGATIVE ||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO);
}
}
///
/// Indicates whether the term is a floating-point +oo
///
public bool IsFPPlusInfinity{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_PLUS_INF; } }
///
/// Indicates whether the term is a floating-point -oo
///
public bool IsFPMinusInfinity{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MINUS_INF; } }
///
/// Indicates whether the term is a floating-point NaN
///
public bool IsFPNaN { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_NAN; } }
///
/// Indicates whether the term is a floating-point +zero
///
public bool IsFPPlusZero { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_PLUS_ZERO; } }
///
/// Indicates whether the term is a floating-point -zero
///
public bool IsFPMinusZero { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MINUS_ZERO; } }
///
/// Indicates whether the term is a floating-point addition term
///
public bool IsFPAdd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ADD; } }
///
/// Indicates whether the term is a floating-point subtraction term
///
public bool IsFPSub { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_SUB; } }
///
/// Indicates whether the term is a floating-point negation term
///
public bool IsFPNeg { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_NEG; } }
///
/// Indicates whether the term is a floating-point multiplication term
///
public bool IsFPMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MUL; } }
///
/// Indicates whether the term is a floating-point division term
///
public bool IsFPDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_DIV; } }
///
/// Indicates whether the term is a floating-point remainder term
///
public bool IsFPRem { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_REM; } }
///
/// Indicates whether the term is a floating-point term absolute value term
///
public bool IsFPAbs { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ABS; } }
///
/// Indicates whether the term is a floating-point minimum term
///
public bool IsFPMin { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MIN; } }
///
/// Indicates whether the term is a floating-point maximum term
///
public bool IsFPMax { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MAX; } }
///
/// Indicates whether the term is a floating-point fused multiply-add term
///
public bool IsFPFMA { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_FMA; } }
///
/// Indicates whether the term is a floating-point square root term
///
public bool IsFPSqrt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_SQRT; } }
///
/// Indicates whether the term is a floating-point roundToIntegral term
///
public bool IsFPRoundToIntegral { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_ROUND_TO_INTEGRAL; } }
///
/// Indicates whether the term is a floating-point equality term
///
public bool IsFPEq { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_EQ; } }
///
/// Indicates whether the term is a floating-point less-than term
///
public bool IsFPLt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_LT; } }
///
/// Indicates whether the term is a floating-point greater-than term
///
public bool IsFPGt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_GT; } }
///
/// Indicates whether the term is a floating-point less-than or equal term
///
public bool IsFPLe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_LE; } }
///
/// Indicates whether the term is a floating-point greater-than or equal term
///
public bool IsFPGe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_GE; } }
///
/// Indicates whether the term is a floating-point isNaN predicate term
///
public bool IsFPisNaN { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NAN; } }
///
/// Indicates whether the term is a floating-point isInf predicate term
///
public bool IsFPisInf { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_INF; } }
///
/// Indicates whether the term is a floating-point isZero predicate term
///
public bool IsFPisZero { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_ZERO; } }
///
/// Indicates whether the term is a floating-point isNormal term
///
public bool IsFPisNormal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NORMAL; } }
///
/// Indicates whether the term is a floating-point isSubnormal predicate term
///
public bool IsFPisSubnormal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_SUBNORMAL; } }
///
/// Indicates whether the term is a floating-point isNegative predicate term
///
public bool IsFPisNegative { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NEGATIVE; } }
///
/// Indicates whether the term is a floating-point isPositive predicate term
///
public bool IsFPisPositive { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_POSITIVE; } }
///
/// Indicates whether the term is a floating-point constructor term
///
public bool IsFPFP { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_FP; } }
///
/// Indicates whether the term is a floating-point conversion term
///
public bool IsFPToFp { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_FP; } }
///
/// Indicates whether the term is a floating-point conversion from unsigned bit-vector term
///
public bool IsFPToFpUnsigned { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_FP_UNSIGNED; } }
///
/// Indicates whether the term is a floating-point conversion to unsigned bit-vector term
///
public bool IsFPToUBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_UBV; } }
///
/// Indicates whether the term is a floating-point conversion to signed bit-vector term
///
public bool IsFPToSBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_SBV; } }
///
/// Indicates whether the term is a floating-point conversion to real term
///
public bool IsFPToReal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_REAL; } }
///
/// Indicates whether the term is a floating-point conversion to IEEE-754 bit-vector term
///
public bool IsFPToIEEEBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_IEEE_BV; } }
#endregion
#endregion
#region Bound Variables
///
/// The de-Bruijn index of a bound variable.
///
///
/// Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
/// the meaning of de-Bruijn indices by indicating the compilation process from
/// non-de-Bruijn formulas to de-Bruijn format.
///
/// abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
/// abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
/// abs1(x, x, n) = b_n
/// abs1(y, x, n) = y
/// abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
/// abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
///
/// The last line is significant: the index of a bound variable is different depending
/// on the scope in which it appears. The deeper x appears, the higher is its
/// index.
///
public uint Index
{
get
{
if (!IsVar)
throw new Z3Exception("Term is not a bound variable.");
return Native.Z3_get_index_value(Context.nCtx, NativeObject);
}
}
#endregion
#region Internal
///
/// Constructor for Expr
///
internal protected Expr(Context ctx, IntPtr obj) : base(ctx, obj) { Debug.Assert(ctx != null); }
#if DEBUG
internal override void CheckNativeObject(IntPtr obj)
{
if (Native.Z3_is_app(Context.nCtx, obj) == 0 &&
Native.Z3_get_ast_kind(Context.nCtx, obj) != (uint)Z3_ast_kind.Z3_VAR_AST &&
Native.Z3_get_ast_kind(Context.nCtx, obj) != (uint)Z3_ast_kind.Z3_QUANTIFIER_AST)
throw new Z3Exception("Underlying object is not a term");
base.CheckNativeObject(obj);
}
#endif
internal static Expr Create(Context ctx, FuncDecl f, params Expr[] arguments)
{
Debug.Assert(ctx != null);
Debug.Assert(f != null);
IntPtr obj = Native.Z3_mk_app(ctx.nCtx, f.NativeObject,
AST.ArrayLength(arguments),
AST.ArrayToNative(arguments));
return Create(ctx, obj);
}
new internal static Expr Create(Context ctx, IntPtr obj)
{
Debug.Assert(ctx != null);
Z3_ast_kind k = (Z3_ast_kind)Native.Z3_get_ast_kind(ctx.nCtx, obj);
if (k == Z3_ast_kind.Z3_QUANTIFIER_AST)
return new Quantifier(ctx, obj);
IntPtr s = Native.Z3_get_sort(ctx.nCtx, obj);
Z3_sort_kind sk = (Z3_sort_kind)Native.Z3_get_sort_kind(ctx.nCtx, s);
if (0 != Native.Z3_is_algebraic_number(ctx.nCtx, obj)) // is this a numeral ast?
return new AlgebraicNum(ctx, obj);
if (Native.Z3_is_numeral_ast(ctx.nCtx, obj) != 0)
{
switch (sk)
{
case Z3_sort_kind.Z3_INT_SORT: return new IntNum(ctx, obj);
case Z3_sort_kind.Z3_REAL_SORT: return new RatNum(ctx, obj);
case Z3_sort_kind.Z3_BV_SORT: return new BitVecNum(ctx, obj);
case Z3_sort_kind.Z3_FLOATING_POINT_SORT: return new FPNum(ctx, obj);
case Z3_sort_kind.Z3_ROUNDING_MODE_SORT: return new FPRMNum(ctx, obj);
case Z3_sort_kind.Z3_FINITE_DOMAIN_SORT: return new FiniteDomainNum(ctx, obj);
}
}
switch (sk)
{
case Z3_sort_kind.Z3_BOOL_SORT: return new BoolExpr(ctx, obj);
case Z3_sort_kind.Z3_INT_SORT: return new IntExpr(ctx, obj);
case Z3_sort_kind.Z3_REAL_SORT: return new RealExpr(ctx, obj);
case Z3_sort_kind.Z3_BV_SORT: return new BitVecExpr(ctx, obj);
case Z3_sort_kind.Z3_ARRAY_SORT: return new ArrayExpr(ctx, obj);
case Z3_sort_kind.Z3_DATATYPE_SORT: return new DatatypeExpr(ctx, obj);
case Z3_sort_kind.Z3_FLOATING_POINT_SORT: return new FPExpr(ctx, obj);
case Z3_sort_kind.Z3_ROUNDING_MODE_SORT: return new FPRMExpr(ctx, obj);
case Z3_sort_kind.Z3_FINITE_DOMAIN_SORT: return new FiniteDomainExpr(ctx, obj);
case Z3_sort_kind.Z3_RE_SORT: return new ReExpr(ctx, obj);
case Z3_sort_kind.Z3_SEQ_SORT: return new SeqExpr(ctx, obj);
}
return new Expr(ctx, obj);
}
#endregion
}
}