z3-z3-4.13.0.src.api.z3_rcf.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
z3_rcf.h
Abstract:
Additional APIs for handling elements of the Z3 real closed field that contains:
- transcendental extensions
- infinitesimal extensions
- algebraic extensions
Author:
Leonardo de Moura (leonardo) 2012-01-05
Notes:
--*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/** \defgroup capi C API */
/**@{*/
/** @name Real Closed Fields */
/**@{*/
/**
\brief Delete a RCF numeral created using the RCF API.
def_API('Z3_rcf_del', VOID, (_in(CONTEXT), _in(RCF_NUM)))
*/
void Z3_API Z3_rcf_del(Z3_context c, Z3_rcf_num a);
/**
\brief Return a RCF rational using the given string.
def_API('Z3_rcf_mk_rational', RCF_NUM, (_in(CONTEXT), _in(STRING)))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_rational(Z3_context c, Z3_string val);
/**
\brief Return a RCF small integer.
def_API('Z3_rcf_mk_small_int', RCF_NUM, (_in(CONTEXT), _in(INT)))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_small_int(Z3_context c, int val);
/**
\brief Return Pi
def_API('Z3_rcf_mk_pi', RCF_NUM, (_in(CONTEXT),))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_pi(Z3_context c);
/**
\brief Return e (Euler's constant)
def_API('Z3_rcf_mk_e', RCF_NUM, (_in(CONTEXT),))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_e(Z3_context c);
/**
\brief Return a new infinitesimal that is smaller than all elements in the Z3 field.
def_API('Z3_rcf_mk_infinitesimal', RCF_NUM, (_in(CONTEXT),))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(Z3_context c);
/**
\brief Store in roots the roots of the polynomial \ccode{a[n-1]*x^{n-1} + ... + a[0]}.
The output vector \c roots must have size \c n.
It returns the number of roots of the polynomial.
\pre The input polynomial is not the zero polynomial.
def_API('Z3_rcf_mk_roots', UINT, (_in(CONTEXT), _in(UINT), _in_array(1, RCF_NUM), _out_array(1, RCF_NUM)))
*/
unsigned Z3_API Z3_rcf_mk_roots(Z3_context c, unsigned n, Z3_rcf_num const a[], Z3_rcf_num roots[]);
/**
\brief Return the value \ccode{a + b}.
def_API('Z3_rcf_add', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_add(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return the value \ccode{a - b}.
def_API('Z3_rcf_sub', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_sub(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return the value \ccode{a * b}.
def_API('Z3_rcf_mul', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_mul(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return the value \ccode{a / b}.
def_API('Z3_rcf_div', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_div(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return the value \ccode{-a}.
def_API('Z3_rcf_neg', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_neg(Z3_context c, Z3_rcf_num a);
/**
\brief Return the value \ccode{1/a}.
def_API('Z3_rcf_inv', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM)))
*/
Z3_rcf_num Z3_API Z3_rcf_inv(Z3_context c, Z3_rcf_num a);
/**
\brief Return the value \ccode{a^k}.
def_API('Z3_rcf_power', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
*/
Z3_rcf_num Z3_API Z3_rcf_power(Z3_context c, Z3_rcf_num a, unsigned k);
/**
\brief Return \c true if \ccode{a < b}.
def_API('Z3_rcf_lt', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_lt(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return \c true if \ccode{a > b}.
def_API('Z3_rcf_gt', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_gt(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return \c true if \ccode{a <= b}.
def_API('Z3_rcf_le', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_le(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return \c true if \ccode{a >= b}.
def_API('Z3_rcf_ge', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_ge(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return \c true if \ccode{a == b}.
def_API('Z3_rcf_eq', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_eq(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Return \c true if \ccode{a != b}.
def_API('Z3_rcf_neq', BOOL, (_in(CONTEXT), _in(RCF_NUM), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_neq(Z3_context c, Z3_rcf_num a, Z3_rcf_num b);
/**
\brief Convert the RCF numeral into a string.
def_API('Z3_rcf_num_to_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(BOOL), _in(BOOL)))
*/
Z3_string Z3_API Z3_rcf_num_to_string(Z3_context c, Z3_rcf_num a, bool compact, bool html);
/**
\brief Convert the RCF numeral into a string in decimal notation.
def_API('Z3_rcf_num_to_decimal_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
*/
Z3_string Z3_API Z3_rcf_num_to_decimal_string(Z3_context c, Z3_rcf_num a, unsigned prec);
/**
\brief Extract the "numerator" and "denominator" of the given RCF numeral.
We have that \ccode{a = n/d}, moreover \c n and \c d are not represented using rational functions.
def_API('Z3_rcf_get_numerator_denominator', VOID, (_in(CONTEXT), _in(RCF_NUM), _out(RCF_NUM), _out(RCF_NUM)))
*/
void Z3_API Z3_rcf_get_numerator_denominator(Z3_context c, Z3_rcf_num a, Z3_rcf_num * n, Z3_rcf_num * d);
/**
\brief Return \c true if \c a represents a rational number.
def_API('Z3_rcf_is_rational', BOOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_is_rational(Z3_context c, Z3_rcf_num a);
/**
\brief Return \c true if \c a represents an algebraic number.
def_API('Z3_rcf_is_algebraic', BOOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_is_algebraic(Z3_context c, Z3_rcf_num a);
/**
\brief Return \c true if \c a represents an infinitesimal.
def_API('Z3_rcf_is_infinitesimal', BOOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_is_infinitesimal(Z3_context c, Z3_rcf_num a);
/**
\brief Return \c true if \c a represents a transcendental number.
def_API('Z3_rcf_is_transcendental', BOOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
bool Z3_API Z3_rcf_is_transcendental(Z3_context c, Z3_rcf_num a);
/**
\brief Return the index of a field extension.
def_API('Z3_rcf_extension_index', UINT, (_in(CONTEXT), _in(RCF_NUM)))
*/
unsigned Z3_API Z3_rcf_extension_index(Z3_context c, Z3_rcf_num a);
/**
\brief Return the name of a transcendental.
\pre Z3_rcf_is_transcendtal(ctx, a);
def_API('Z3_rcf_transcendental_name', SYMBOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
Z3_symbol Z3_API Z3_rcf_transcendental_name(Z3_context c, Z3_rcf_num a);
/**
\brief Return the name of an infinitesimal.
\pre Z3_rcf_is_infinitesimal(ctx, a);
def_API('Z3_rcf_infinitesimal_name', SYMBOL, (_in(CONTEXT), _in(RCF_NUM)))
*/
Z3_symbol Z3_API Z3_rcf_infinitesimal_name(Z3_context c, Z3_rcf_num a);
/**
\brief Return the number of coefficients in an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_num_coefficients', UINT, (_in(CONTEXT), _in(RCF_NUM)))
*/
unsigned Z3_API Z3_rcf_num_coefficients(Z3_context c, Z3_rcf_num a);
/**
\brief Extract a coefficient from an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_coefficient', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
*/
Z3_rcf_num Z3_API Z3_rcf_coefficient(Z3_context c, Z3_rcf_num a, unsigned i);
/**
\brief Extract an interval from an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_interval', INT, (_in(CONTEXT), _in(RCF_NUM), _out(INT), _out(INT), _out(RCF_NUM), _out(INT), _out(INT), _out(RCF_NUM)))
*/
int Z3_API Z3_rcf_interval(Z3_context c, Z3_rcf_num a, int * lower_is_inf, int * lower_is_open, Z3_rcf_num * lower, int * upper_is_inf, int * upper_is_open, Z3_rcf_num * upper);
/**
\brief Return the number of sign conditions of an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_num_sign_conditions', UINT, (_in(CONTEXT), _in(RCF_NUM)))
*/
unsigned Z3_API Z3_rcf_num_sign_conditions(Z3_context c, Z3_rcf_num a);
/**
\brief Extract the sign of a sign condition from an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_sign_condition_sign', INT, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
*/
int Z3_API Z3_rcf_sign_condition_sign(Z3_context c, Z3_rcf_num a, unsigned i);
/**
\brief Return the number of sign condition polynomial coefficients of an algebraic number.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_num_sign_condition_coefficients', UINT, (_in(CONTEXT), _in(RCF_NUM), _in(UINT)))
*/
unsigned Z3_API Z3_rcf_num_sign_condition_coefficients(Z3_context c, Z3_rcf_num a, unsigned i);
/**
\brief Extract the j-th polynomial coefficient of the i-th sign condition.
\pre Z3_rcf_is_algebraic(ctx, a);
def_API('Z3_rcf_sign_condition_coefficient', RCF_NUM, (_in(CONTEXT), _in(RCF_NUM), _in(UINT), _in(UINT)))
*/
Z3_rcf_num Z3_API Z3_rcf_sign_condition_coefficient(Z3_context c, Z3_rcf_num a, unsigned i, unsigned j);
/**@}*/
/**@}*/
#ifdef __cplusplus
}
#endif // __cplusplus