z3-z3-4.13.0.src.ast.euf.euf_ac_plugin.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2023 Microsoft Corporation
Module Name:
euf_ac_plugin.cpp
Abstract:
plugin structure for ac functions
Author:
Nikolaj Bjorner (nbjorner) 2023-11-11
Completion modulo AC
E set of eqs
pick critical pair xy = z by j1 xu = v by j2 in E
Add new equation zu = xyu = vy by j1, j2
Notes:
- Some equalities come from shared terms, some do not.
- V2 can use multiplicities of elements to handle larger domains.
- e.g. 3x + 100000y
More notes:
Justifications for new equations are joined (requires extension to egraph/justification)
Process new merges so use list is updated
Justifications for processed merges are recorded
Updated equations are recorded for restoration on backtracking
Keep track of foreign / shared occurrences of AC functions.
- use register_shared to accumulate shared occurrences.
Shared occurrences are rewritten modulo completion.
When equal to a different shared occurrence, propagate equality.
- Elimination of redundant rules.
-> forward and backward subsumption
- apply forward subsumption when simplifying equality using processed
- apply backward subsumption when simplifying processed and to_simplify
Rewrite rules are reoriented after a merge of enodes.
It simulates creating a critical pair:
n -> n'
n + k = j + k
after merge
n' + k = j + k, could be that n' + k < j + k < n + k in term ordering because n' < j, m < n
TODOs:
- Efficiency of handling shared terms.
- The shared terms hash table is not incremental.
It could be made incremental by updating it on every merge similar to how the egraph handles it.
- V2 using multiplicities instead of repeated values in monomials.
- Squash trail updates when equations or monomials are modified within the same epoch.
- by an epoch counter that can be updated by the egraph class whenever there is a push/pop.
- store the epoch as a tick on equations and possibly when updating monomials on equations.
--*/
#include "ast/euf/euf_ac_plugin.h"
#include "ast/euf/euf_egraph.h"
#include "ast/ast_pp.h"
namespace euf {
ac_plugin::ac_plugin(egraph& g, unsigned fid, unsigned op) :
plugin(g), m_fid(fid), m_op(op),
m_dep_manager(get_region()),
m_hash(*this), m_eq(*this), m_monomial_table(m_hash, m_eq)
{
g.set_th_propagates_diseqs(m_fid);
}
ac_plugin::ac_plugin(egraph& g, func_decl* f) :
plugin(g), m_fid(f->get_family_id()), m_decl(f),
m_dep_manager(get_region()),
m_hash(*this), m_eq(*this), m_monomial_table(m_hash, m_eq)
{
if (m_fid != null_family_id)
g.set_th_propagates_diseqs(m_fid);
}
void ac_plugin::register_node(enode* n) {
if (is_op(n))
return;
for (auto arg : enode_args(n))
if (is_op(arg))
register_shared(arg); // TODO optimization to avoid registering shared terms twice
}
void ac_plugin::register_shared(enode* n) {
if (m_shared_nodes.get(n->get_id(), false))
return;
auto m = to_monomial(n);
auto const& ns = monomial(m);
for (auto arg : ns) {
arg->shared.push_back(m);
m_node_trail.push_back(arg);
push_undo(is_add_shared_index);
}
m_shared_nodes.setx(n->get_id(), true, false);
sort(monomial(m));
m_shared_todo.insert(m_shared.size());
m_shared.push_back({ n, m, justification::axiom(get_id()) });
push_undo(is_register_shared);
}
void ac_plugin::undo() {
auto k = m_undo.back();
m_undo.pop_back();
switch (k) {
case is_add_eq: {
m_eqs.pop_back();
break;
}
case is_add_node: {
auto* n = m_node_trail.back();
m_node_trail.pop_back();
m_nodes[n->n->get_id()] = nullptr;
n->~node();
break;
}
case is_add_monomial: {
m_monomials.pop_back();
break;
}
case is_merge_node: {
auto [other, old_shared, old_eqs] = m_merge_trail.back();
auto* root = other->root;
std::swap(other->next, root->next);
root->shared.shrink(old_shared);
root->eqs.shrink(old_eqs);
m_merge_trail.pop_back();
++m_tick;
break;
}
case is_update_eq: {
auto const& [idx, eq] = m_update_eq_trail.back();
m_eqs[idx] = eq;
m_update_eq_trail.pop_back();
break;
}
case is_add_shared_index: {
auto n = m_node_trail.back();
m_node_trail.pop_back();
n->shared.pop_back();
break;
}
case is_add_eq_index: {
auto n = m_node_trail.back();
m_node_trail.pop_back();
n->eqs.pop_back();
break;
}
case is_register_shared: {
auto s = m_shared.back();
m_shared_nodes[s.n->get_id()] = false;
m_shared.pop_back();
break;
}
case is_update_shared: {
auto [id, s] = m_update_shared_trail.back();
m_shared[id] = s;
m_update_shared_trail.pop_back();
break;
}
default:
UNREACHABLE();
}
}
std::ostream& ac_plugin::display_monomial(std::ostream& out, ptr_vector const& m) const {
for (auto n : m) {
if (n->n->num_args() == 0)
out << mk_pp(n->n->get_expr(), g.get_manager()) << " ";
else
out << g.bpp(n->n) << " ";
}
return out;
}
std::ostream& ac_plugin::display_equation(std::ostream& out, eq const& e) const {
display_status(out, e.status) << " ";
display_monomial(out, monomial(e.l));
out << "== ";
display_monomial(out, monomial(e.r));
return out;
}
std::ostream& ac_plugin::display_status(std::ostream& out, eq_status s) const {
switch (s) {
case eq_status::is_dead: out << "d"; break;
case eq_status::processed: out << "p"; break;
case eq_status::to_simplify: out << "s"; break;
}
return out;
}
std::ostream& ac_plugin::display(std::ostream& out) const {
unsigned i = 0;
for (auto const& eq : m_eqs) {
out << i << ": " << eq.l << " == " << eq.r << ": ";
display_equation(out, eq);
out << "\n";
++i;
}
i = 0;
for (auto m : m_monomials) {
out << i << ": ";
display_monomial(out, m);
out << "\n";
++i;
}
for (auto n : m_nodes) {
if (!n)
continue;
if (n->eqs.empty() && n->shared.empty())
continue;
out << g.bpp(n->n) << " r: " << n->root_id() << " ";
if (!n->eqs.empty()) {
out << "eqs ";
for (auto l : n->eqs)
out << l << " ";
}
if (!n->shared.empty()) {
out << "shared ";
for (auto s : n->shared)
out << s << " ";
}
out << "\n";
}
return out;
}
void ac_plugin::merge_eh(enode* l, enode* r) {
if (l == r)
return;
auto j = justification::equality(l, r);
if (!is_op(l) && !is_op(r))
merge(mk_node(l), mk_node(r), j);
else
init_equation(eq(to_monomial(l), to_monomial(r), j));
}
void ac_plugin::diseq_eh(enode* eq) {
SASSERT(g.get_manager().is_eq(eq->get_expr()));
enode* a = eq->get_arg(0), * b = eq->get_arg(1);
a = a->get_closest_th_node(m_fid);
b = b->get_closest_th_node(m_fid);
SASSERT(a && b);
register_shared(a);
register_shared(b);
}
void ac_plugin::init_equation(eq const& e) {
m_eqs.push_back(e);
auto& eq = m_eqs.back();
if (orient_equation(eq)) {
unsigned eq_id = m_eqs.size() - 1;
for (auto n : monomial(eq.l)) {
if (!n->root->n->is_marked1()) {
n->root->eqs.push_back(eq_id);
n->root->n->mark1();
push_undo(is_add_eq_index);
m_node_trail.push_back(n->root);
}
}
for (auto n : monomial(eq.r)) {
if (!n->root->n->is_marked1()) {
n->root->eqs.push_back(eq_id);
n->root->n->mark1();
push_undo(is_add_eq_index);
m_node_trail.push_back(n->root);
}
}
for (auto n : monomial(eq.l))
n->root->n->unmark1();
for (auto n : monomial(eq.r))
n->root->n->unmark1();
m_to_simplify_todo.insert(eq_id);
}
else
m_eqs.pop_back();
}
bool ac_plugin::orient_equation(eq& e) {
auto& ml = monomial(e.l);
auto& mr = monomial(e.r);
if (ml.size() > mr.size())
return true;
if (ml.size() < mr.size()) {
std::swap(e.l, e.r);
return true;
}
else {
sort(ml);
sort(mr);
for (unsigned i = ml.size(); i-- > 0;) {
if (ml[i]->root_id() == mr[i]->root_id())
continue;
if (ml[i]->root_id() < mr[i]->root_id())
std::swap(e.l, e.r);
return true;
}
return false;
}
}
void ac_plugin::sort(monomial_t& m) {
std::sort(m.begin(), m.end(), [&](node* a, node* b) { return a->root_id() < b->root_id(); });
}
bool ac_plugin::is_sorted(monomial_t const& m) const {
if (m.m_bloom.m_tick == m_tick)
return true;
for (unsigned i = m.size(); i-- > 1; )
if (m[i - 1]->root_id() > m[i]->root_id())
return false;
return true;
}
uint64_t ac_plugin::filter(monomial_t& m) {
auto& bloom = m.m_bloom;
if (bloom.m_tick == m_tick)
return bloom.m_filter;
bloom.m_filter = 0;
for (auto n : m)
bloom.m_filter |= (1ull << (n->root_id() % 64ull));
if (!is_sorted(m))
sort(m);
bloom.m_tick = m_tick;
return bloom.m_filter;
}
bool ac_plugin::can_be_subset(monomial_t& subset, monomial_t& superset) {
if (subset.size() > superset.size())
return false;
auto f1 = filter(subset);
auto f2 = filter(superset);
return (f1 | f2) == f2;
}
bool ac_plugin::can_be_subset(monomial_t& subset, ptr_vector const& m, bloom& bloom) {
if (subset.size() > m.size())
return false;
if (bloom.m_tick != m_tick) {
bloom.m_filter = 0;
for (auto n : m)
bloom.m_filter |= (1ull << (n->root_id() % 64ull));
bloom.m_tick = m_tick;
}
auto f2 = bloom.m_filter;
return (filter(subset) | f2) == f2;
}
void ac_plugin::merge(node* root, node* other, justification j) {
for (auto n : equiv(other))
n->root = root;
m_merge_trail.push_back({ other, root->shared.size(), root->eqs.size() });
for (auto eq_id : other->eqs)
set_status(eq_id, eq_status::to_simplify);
for (auto m : other->shared)
m_shared_todo.insert(m);
root->shared.append(other->shared);
root->eqs.append(other->eqs);
std::swap(root->next, other->next);
push_undo(is_merge_node);
++m_tick;
}
void ac_plugin::push_undo(undo_kind k) {
m_undo.push_back(k);
push_plugin_undo(get_id());
m_undo_notify(); // tell main plugin to dispatch undo to this module.
}
unsigned ac_plugin::to_monomial(enode* n) {
enode_vector& ns = m_todo;
ns.reset();
ptr_vector m;
ns.push_back(n);
for (unsigned i = 0; i < ns.size(); ++i) {
n = ns[i];
if (is_op(n))
ns.append(n->num_args(), n->args());
else
m.push_back(mk_node(n));
}
return to_monomial(n, m);
}
unsigned ac_plugin::to_monomial(enode* e, ptr_vector const& ms) {
unsigned id = m_monomials.size();
m_monomials.push_back({ ms, bloom() });
push_undo(is_add_monomial);
return id;
}
ac_plugin::node* ac_plugin::node::mk(region& r, enode* n) {
auto* mem = r.allocate(sizeof(node));
node* res = new (mem) node();
res->n = n;
res->root = res;
res->next = res;
return res;
}
ac_plugin::node* ac_plugin::mk_node(enode* n) {
unsigned id = n->get_id();
if (m_nodes.size() > id && m_nodes[id])
return m_nodes[id];
auto* r = node::mk(get_region(), n);
push_undo(is_add_node);
m_nodes.setx(id, r, nullptr);
m_node_trail.push_back(r);
return r;
}
void ac_plugin::propagate() {
while (true) {
loop_start:
unsigned eq_id = pick_next_eq();
if (eq_id == UINT_MAX)
break;
TRACE("plugin", tout << "propagate " << eq_id << ": " << eq_pp(*this, m_eqs[eq_id]) << "\n");
// simplify eq using processed
for (auto other_eq : backward_iterator(eq_id))
TRACE("plugin", tout << "backward iterator " << eq_id << " vs " << other_eq << " " << is_processed(other_eq) << "\n");
for (auto other_eq : backward_iterator(eq_id))
if (is_processed(other_eq) && backward_simplify(eq_id, other_eq))
goto loop_start;
set_status(eq_id, eq_status::processed);
// simplify processed using eq
for (auto other_eq : forward_iterator(eq_id))
if (is_processed(other_eq))
forward_simplify(eq_id, other_eq);
// superpose, create new equations
for (auto other_eq : superpose_iterator(eq_id))
if (is_processed(other_eq))
superpose(eq_id, other_eq);
// simplify to_simplify using eq
for (auto other_eq : forward_iterator(eq_id))
if (is_to_simplify(other_eq))
forward_simplify(eq_id, other_eq);
}
propagate_shared();
CTRACE("plugin", !m_shared.empty() || !m_eqs.empty(), display(tout));
}
unsigned ac_plugin::pick_next_eq() {
while (!m_to_simplify_todo.empty()) {
unsigned id = *m_to_simplify_todo.begin();
if (id < m_eqs.size() && is_to_simplify(id))
return id;
m_to_simplify_todo.remove(id);
}
return UINT_MAX;
}
// reorient equations when the status of equations are set to to_simplify.
void ac_plugin::set_status(unsigned id, eq_status s) {
auto& eq = m_eqs[id];
if (eq.status == eq_status::is_dead)
return;
if (s == eq_status::to_simplify && are_equal(monomial(eq.l), monomial(eq.r)))
s = eq_status::is_dead;
if (eq.status != s) {
m_update_eq_trail.push_back({ id, eq });
eq.status = s;
push_undo(is_update_eq);
}
switch (s) {
case eq_status::processed:
case eq_status::is_dead:
m_to_simplify_todo.remove(id);
break;
case eq_status::to_simplify:
m_to_simplify_todo.insert(id);
orient_equation(eq);
break;
}
}
//
// superpose iterator enumerates all equations where lhs of eq have element in common.
//
unsigned_vector const& ac_plugin::superpose_iterator(unsigned eq_id) {
auto const& eq = m_eqs[eq_id];
m_src_r.reset();
m_src_r.append(monomial(eq.r).m_nodes);
init_ref_counts(monomial(eq.l), m_src_l_counts);
init_overlap_iterator(eq_id, monomial(eq.l));
return m_eq_occurs;
}
//
// backward iterator allows simplification of eq
// The rhs of eq is a super-set of lhs of other eq.
//
unsigned_vector const& ac_plugin::backward_iterator(unsigned eq_id) {
auto const& eq = m_eqs[eq_id];
init_ref_counts(monomial(eq.r), m_dst_r_counts);
init_ref_counts(monomial(eq.l), m_dst_l_counts);
m_dst_r.reset();
m_dst_r.append(monomial(eq.r).m_nodes);
init_subset_iterator(eq_id, monomial(eq.r));
return m_eq_occurs;
}
void ac_plugin::init_overlap_iterator(unsigned eq_id, monomial_t const& m) {
m_eq_occurs.reset();
for (auto n : m)
m_eq_occurs.append(n->root->eqs);
compress_eq_occurs(eq_id);
}
//
// add all but one of the use lists. Identify the largest use list and skip it.
// The rationale is that [a, b] is a subset of [a, b, c, d, e] if
// it has at least two elements (otherwise it would not apply as a rewrite over AC).
// then one of the two elements has to be in the set of [a, b, c, d, e] \ { x }
// where x is an arbitrary value from a, b, c, d, e. Not a two-element watch list, but still.
//
void ac_plugin::init_subset_iterator(unsigned eq_id, monomial_t const& m) {
unsigned max_use = 0;
node* max_n = nullptr;
bool has_two = false;
for (auto n : m)
if (n->root->eqs.size() >= max_use)
has_two |= max_n && (max_n != n->root), max_n = n->root, max_use = n->root->eqs.size();
m_eq_occurs.reset();
if (has_two) {
for (auto n : m)
if (n->root != max_n)
m_eq_occurs.append(n->root->eqs);
}
else {
for (auto n : m) {
m_eq_occurs.append(n->root->eqs);
break;
}
}
compress_eq_occurs(eq_id);
}
// prune m_eq_occurs to single occurrences
void ac_plugin::compress_eq_occurs(unsigned eq_id) {
unsigned j = 0;
m_eq_seen.reserve(m_eqs.size() + 1, false);
for (unsigned i = 0; i < m_eq_occurs.size(); ++i) {
unsigned id = m_eq_occurs[i];
if (m_eq_seen[id])
continue;
if (id == eq_id)
continue;
m_eq_occurs[j++] = id;
m_eq_seen[id] = true;
}
m_eq_occurs.shrink(j);
for (auto id : m_eq_occurs)
m_eq_seen[id] = false;
}
//
// forward iterator simplifies other eqs where their rhs is a superset of lhs of eq
//
unsigned_vector const& ac_plugin::forward_iterator(unsigned eq_id) {
auto& eq = m_eqs[eq_id];
m_src_r.reset();
m_src_r.append(monomial(eq.r).m_nodes);
init_ref_counts(monomial(eq.l), m_src_l_counts);
init_ref_counts(monomial(eq.r), m_src_r_counts);
unsigned min_r = UINT_MAX;
node* min_n = nullptr;
for (auto n : monomial(eq.l))
if (n->root->eqs.size() < min_r)
min_n = n, min_r = n->root->eqs.size();
// found node that occurs in fewest eqs
VERIFY(min_n);
return min_n->eqs;
}
void ac_plugin::init_ref_counts(monomial_t const& monomial, ref_counts& counts) const {
init_ref_counts(monomial.m_nodes, counts);
}
void ac_plugin::init_ref_counts(ptr_vector const& monomial, ref_counts& counts) const {
counts.reset();
for (auto n : monomial)
counts.inc(n->root_id(), 1);
}
bool ac_plugin::is_correct_ref_count(monomial_t const& m, ref_counts const& counts) const {
return is_correct_ref_count(m.m_nodes, counts);
}
bool ac_plugin::is_correct_ref_count(ptr_vector const& m, ref_counts const& counts) const {
ref_counts check;
init_ref_counts(m, check);
return
all_of(counts, [&](unsigned i) { return check[i] == counts[i]; }) &&
all_of(check, [&](unsigned i) { return check[i] == counts[i]; });
}
void ac_plugin::forward_simplify(unsigned src_eq, unsigned dst_eq) {
if (src_eq == dst_eq)
return;
// check that left src.l is a subset of dst.r
// dst = A -> BC
// src = B -> D
// post(dst) := A -> CD
auto& src = m_eqs[src_eq]; // src_r_counts, src_l_counts are initialized
auto& dst = m_eqs[dst_eq];
TRACE("plugin", tout << "forward simplify " << eq_pp(*this, src) << " " << eq_pp(*this, dst) << "\n");
if (forward_subsumes(src_eq, dst_eq)) {
TRACE("plugin", tout << "forward subsumed\n");
set_status(dst_eq, eq_status::is_dead);
return;
}
if (!can_be_subset(monomial(src.l), monomial(dst.r)))
return;
m_dst_r_counts.reset();
unsigned src_l_size = monomial(src.l).size();
unsigned src_r_size = m_src_r.size();
SASSERT(is_correct_ref_count(monomial(src.l), m_src_l_counts));
// subtract src.l from dst.r if src.l is a subset of dst.r
// dst_rhs := dst_rhs - src_lhs + src_rhs
// := src_rhs + (dst_rhs - src_lhs)
// := src_rhs + elements from dst_rhs that are in excess of src_lhs
unsigned num_overlap = 0;
for (auto n : monomial(dst.r)) {
unsigned id = n->root_id();
unsigned dst_count = m_dst_r_counts[id];
unsigned src_count = m_src_l_counts[id];
if (dst_count > src_count) {
m_src_r.push_back(n);
m_dst_r_counts.dec(id, 1);
}
else if (dst_count < src_count) {
m_src_r.shrink(src_r_size);
return;
}
else
++num_overlap;
}
// The dst.r has to be a superset of src.l, otherwise simplification does not apply
if (num_overlap != src_l_size) {
m_src_r.shrink(src_r_size);
return;
}
auto j = justify_rewrite(src_eq, dst_eq);
reduce(m_src_r, j);
auto new_r = to_monomial(m_src_r);
index_new_r(dst_eq, monomial(m_eqs[dst_eq].r), monomial(new_r));
m_update_eq_trail.push_back({ dst_eq, m_eqs[dst_eq] });
m_eqs[dst_eq].r = new_r;
m_eqs[dst_eq].j = j;
push_undo(is_update_eq);
m_src_r.reset();
m_src_r.append(monomial(src.r).m_nodes);
TRACE("plugin", tout << "rewritten to " << m_pp(*this, monomial(new_r)) << "\n");
}
bool ac_plugin::backward_simplify(unsigned dst_eq, unsigned src_eq) {
if (src_eq == dst_eq)
return false;
auto& src = m_eqs[src_eq];
auto& dst = m_eqs[dst_eq]; // pre-computed dst_r_counts, dst_l_counts
//
// dst_ids, dst_count contain rhs of dst_eq
//
TRACE("plugin", tout << "backward simplify " << eq_pp(*this, src) << " " << eq_pp(*this, dst) << " can-be-subset: " << can_be_subset(monomial(src.l), monomial(dst.r)) << "\n");
if (backward_subsumes(src_eq, dst_eq)) {
TRACE("plugin", tout << "backward subsumed\n");
set_status(dst_eq, eq_status::is_dead);
return true;
}
// check that src.l is a subset of dst.r
if (!can_be_subset(monomial(src.l), monomial(dst.r)))
return false;
if (!is_subset(m_dst_r_counts, m_src_l_counts, monomial(src.l))) {
TRACE("plugin", tout << "not subset\n");
return false;
}
SASSERT(is_correct_ref_count(monomial(dst.r), m_dst_r_counts));
ptr_vector m(m_dst_r);
init_ref_counts(monomial(src.l), m_src_l_counts);
rewrite1(m_src_l_counts, monomial(src.r), m_dst_r_counts, m);
auto j = justify_rewrite(src_eq, dst_eq);
reduce(m, j);
auto new_r = to_monomial(m);
index_new_r(dst_eq, monomial(m_eqs[dst_eq].r), monomial(new_r));
m_update_eq_trail.push_back({ dst_eq, m_eqs[dst_eq] });
m_eqs[dst_eq].r = new_r;
m_eqs[dst_eq].j = j;
TRACE("plugin", tout << "rewritten to " << m_pp(*this, monomial(new_r)) << "\n");
push_undo(is_update_eq);
return true;
}
// dst_eq is fixed, dst_l_count is pre-computed for monomial(dst.l)
// dst_r_counts is pre-computed for monomial(dst.r).
// is dst_eq subsumed by src_eq?
bool ac_plugin::backward_subsumes(unsigned src_eq, unsigned dst_eq) {
auto& src = m_eqs[src_eq];
auto& dst = m_eqs[dst_eq];
SASSERT(is_correct_ref_count(monomial(dst.l), m_dst_l_counts));
SASSERT(is_correct_ref_count(monomial(dst.r), m_dst_r_counts));
if (!can_be_subset(monomial(src.l), monomial(dst.l)))
return false;
if (!can_be_subset(monomial(src.r), monomial(dst.r)))
return false;
unsigned size_diff = monomial(dst.l).size() - monomial(src.l).size();
if (size_diff != monomial(dst.r).size() - monomial(src.r).size())
return false;
if (!is_subset(m_dst_l_counts, m_src_l_counts, monomial(src.l)))
return false;
if (!is_subset(m_dst_r_counts, m_src_r_counts, monomial(src.r)))
return false;
SASSERT(is_correct_ref_count(monomial(src.l), m_src_l_counts));
SASSERT(is_correct_ref_count(monomial(src.r), m_src_r_counts));
// add difference betwen dst.l and src.l to both src.l, src.r
for (auto n : monomial(dst.l)) {
unsigned id = n->root_id();
SASSERT(m_dst_l_counts[id] >= m_src_l_counts[id]);
unsigned diff = m_dst_l_counts[id] - m_src_l_counts[id];
if (diff > 0) {
m_src_l_counts.inc(id, diff);
m_src_r_counts.inc(id, diff);
}
}
// now dst.r and src.r should align and have the same elements.
// since src.r is a subset of dst.r we iterate over dst.r
return all_of(monomial(dst.r), [&](node* n) { unsigned id = n->root_id(); return m_src_r_counts[id] == m_dst_r_counts[id]; });
}
// src_l_counts, src_r_counts are initialized for src.l, src.r
bool ac_plugin::forward_subsumes(unsigned src_eq, unsigned dst_eq) {
auto& src = m_eqs[src_eq];
auto& dst = m_eqs[dst_eq];
SASSERT(is_correct_ref_count(monomial(src.l), m_src_l_counts));
SASSERT(is_correct_ref_count(monomial(src.r), m_src_r_counts));
if (!can_be_subset(monomial(src.l), monomial(dst.l)))
return false;
if (!can_be_subset(monomial(src.r), monomial(dst.r)))
return false;
unsigned size_diff = monomial(dst.l).size() - monomial(src.l).size();
if (size_diff != monomial(dst.r).size() - monomial(src.r).size())
return false;
if (!is_superset(m_src_l_counts, m_dst_l_counts, monomial(dst.l)))
return false;
if (!is_superset(m_src_r_counts, m_dst_r_counts, monomial(dst.r)))
return false;
SASSERT(is_correct_ref_count(monomial(dst.l), m_dst_l_counts));
SASSERT(is_correct_ref_count(monomial(dst.r), m_dst_r_counts));
for (auto n : monomial(src.l)) {
unsigned id = n->root_id();
SASSERT(m_src_l_counts[id] <= m_dst_l_counts[id]);
unsigned diff = m_dst_l_counts[id] - m_src_l_counts[id];
if (diff == 0)
continue;
m_dst_l_counts.dec(id, diff);
if (m_dst_r_counts[id] < diff)
return false;
m_dst_r_counts.dec(id, diff);
}
return all_of(monomial(dst.r), [&](node* n) { unsigned id = n->root_id(); return m_src_r_counts[id] == m_dst_r_counts[id]; });
}
void ac_plugin::rewrite1(ref_counts const& src_l, monomial_t const& src_r, ref_counts& dst_counts, ptr_vector& dst) {
// pre-condition: is-subset is invoked so that src_l is initialized.
// pre-condition: dst_count is also initialized.
// remove from dst elements that are in src_l
// add elements from src_r
SASSERT(is_correct_ref_count(dst, dst_counts));
SASSERT(&src_r.m_nodes != &dst);
unsigned sz = dst.size(), j = 0;
for (unsigned i = 0; i < sz; ++i) {
auto* n = dst[i];
unsigned id = n->root_id();
unsigned dst_count = dst_counts[id];
unsigned src_count = src_l[id];
SASSERT(dst_count > 0);
if (src_count == 0)
dst[j++] = n;
else if (src_count < dst_count) {
dst[j++] = n;
dst_counts.dec(id, 1);
}
}
dst.shrink(j);
dst.append(src_r.m_nodes);
}
// rewrite monomial to normal form.
bool ac_plugin::reduce(ptr_vector& m, justification& j) {
bool change = false;
do {
init_loop:
if (m.size() == 1)
return change;
bloom b;
init_ref_counts(m, m_m_counts);
for (auto n : m) {
for (auto eq : n->root->eqs) {
if (!is_processed(eq))
continue;
auto& src = m_eqs[eq];
if (!can_be_subset(monomial(src.l), m, b))
continue;
if (!is_subset(m_m_counts, m_eq_counts, monomial(src.l)))
continue;
TRACE("plugin", display_equation(tout << "reduce ", src) << "\n");
SASSERT(is_correct_ref_count(monomial(src.l), m_eq_counts));
rewrite1(m_eq_counts, monomial(src.r), m_m_counts, m);
j = join(j, eq);
change = true;
goto init_loop;
}
}
}
while (false);
return change;
}
// check that src is a subset of dst, where dst_counts are precomputed
bool ac_plugin::is_subset(ref_counts const& dst_counts, ref_counts& src_counts, monomial_t const& src) {
SASSERT(&dst_counts != &src_counts);
init_ref_counts(src, src_counts);
return all_of(src_counts, [&](unsigned idx) { return src_counts[idx] <= dst_counts[idx]; });
}
// check that dst is a superset of src, where src_counts are precomputed
bool ac_plugin::is_superset(ref_counts const& src_counts, ref_counts& dst_counts, monomial_t const& dst) {
SASSERT(&dst_counts != &src_counts);
init_ref_counts(dst, dst_counts);
return all_of(src_counts, [&](unsigned idx) { return src_counts[idx] <= dst_counts[idx]; });
}
void ac_plugin::index_new_r(unsigned eq, monomial_t const& old_r, monomial_t const& new_r) {
for (auto n : old_r)
n->root->n->mark1();
for (auto n : new_r)
if (!n->root->n->is_marked1()) {
n->root->eqs.push_back(eq);
m_node_trail.push_back(n->root);
n->root->n->mark1();
push_undo(is_add_eq_index);
}
for (auto n : old_r)
n->root->n->unmark1();
for (auto n : new_r)
n->root->n->unmark1();
}
void ac_plugin::superpose(unsigned src_eq, unsigned dst_eq) {
if (src_eq == dst_eq)
return;
auto& src = m_eqs[src_eq];
auto& dst = m_eqs[dst_eq];
TRACE("plugin", tout << "superpose: "; display_equation(tout, src); tout << " "; display_equation(tout, dst); tout << "\n";);
// AB -> C, AD -> E => BE ~ CD
// m_src_ids, m_src_counts contains information about src (call it AD -> E)
m_dst_l_counts.reset();
m_dst_r.reset();
m_dst_r.append(monomial(dst.r).m_nodes);
unsigned src_r_size = m_src_r.size();
unsigned dst_r_size = m_dst_r.size();
SASSERT(src_r_size == monomial(src.r).size());
// dst_r contains C
// src_r contains E
// compute BE, initialize dst_ids, dst_counts
bool overlap = false;
for (auto n : monomial(dst.l)) {
unsigned id = n->root_id();
m_dst_l_counts.inc(id, 1);
if (m_src_l_counts[id] < m_dst_l_counts[id])
m_src_r.push_back(n);
overlap |= m_src_l_counts[id] > 0;
}
if (!overlap) {
m_src_r.shrink(src_r_size);
return;
}
// compute CD
for (auto n : monomial(src.l)) {
unsigned id = n->root_id();
if (m_dst_l_counts[id] > 0)
m_dst_l_counts.dec(id, 1);
else
m_dst_r.push_back(n);
}
if (are_equal(m_src_r, m_dst_r)) {
m_src_r.shrink(src_r_size);
return;
}
TRACE("plugin", tout << m_pp(*this, m_src_r) << "== " << m_pp(*this, m_dst_r) << "\n";);
justification j = justify_rewrite(src_eq, dst_eq);
reduce(m_dst_r, j);
reduce(m_src_r, j);
if (m_src_r.size() == 1 && m_dst_r.size() == 1)
push_merge(m_src_r[0]->n, m_dst_r[0]->n, j);
else
init_equation(eq(to_monomial(m_src_r), to_monomial(m_dst_r), j));
m_src_r.reset();
m_src_r.append(monomial(src.r).m_nodes);
}
bool ac_plugin::are_equal(monomial_t& a, monomial_t& b) {
return filter(a) == filter(b) && are_equal(a.m_nodes, b.m_nodes);
}
bool ac_plugin::are_equal(ptr_vector const& a, ptr_vector const& b) {
if (a.size() != b.size())
return false;
m_eq_counts.reset();
for (auto n : a)
m_eq_counts.inc(n->root_id(), 1);
for (auto n : b) {
unsigned id = n->root_id();
if (m_eq_counts[id] == 0)
return false;
m_eq_counts.dec(id, 1);
}
return true;
}
//
// simple version based on propagating all shared
// todo: version touching only newly processed shared, and maintaining incremental data-structures.
// - hash-tables for shared monomials similar to the ones used for euf_table.
// the tables have to be updated (and re-sorted) whenever a child changes root.
//
void ac_plugin::propagate_shared() {
if (m_shared_todo.empty())
return;
while (!m_shared_todo.empty()) {
auto idx = *m_shared_todo.begin();
m_shared_todo.remove(idx);
if (idx < m_shared.size())
simplify_shared(idx, m_shared[idx]);
}
m_monomial_table.reset();
for (auto const& s1 : m_shared) {
shared s2;
TRACE("plugin", tout << "shared " << m_pp(*this, monomial(s1.m)) << "\n");
if (!m_monomial_table.find(s1.m, s2))
m_monomial_table.insert(s1.m, s1);
else if (s2.n->get_root() != s1.n->get_root()) {
TRACE("plugin", tout << m_pp(*this, monomial(s1.m)) << " == " << m_pp(*this, monomial(s2.m)) << "\n");
push_merge(s1.n, s2.n, justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(s1.j), m_dep_manager.mk_leaf(s2.j))));
}
}
}
void ac_plugin::simplify_shared(unsigned idx, shared s) {
auto j = s.j;
auto old_m = s.m;
ptr_vector m1(monomial(old_m).m_nodes);
TRACE("plugin", tout << "simplify " << m_pp(*this, monomial(old_m)) << "\n");
if (!reduce(m1, j))
return;
auto new_m = to_monomial(m1);
// update shared occurrences for members of the new monomial that are not already in the old monomial.
for (auto n : monomial(old_m))
n->root->n->mark1();
for (auto n : m1)
if (!n->root->n->is_marked1()) {
n->root->shared.push_back(idx);
m_shared_todo.insert(idx);
m_node_trail.push_back(n->root);
push_undo(is_add_shared_index);
}
for (auto n : monomial(old_m))
n->root->n->unmark1();
m_update_shared_trail.push_back({ idx, s });
push_undo(is_update_shared);
m_shared[idx].m = new_m;
m_shared[idx].j = j;
}
justification ac_plugin::justify_rewrite(unsigned eq1, unsigned eq2) {
auto* j = m_dep_manager.mk_join(justify_equation(eq1), justify_equation(eq2));
return justification::dependent(j);
}
justification::dependency* ac_plugin::justify_equation(unsigned eq) {
auto const& e = m_eqs[eq];
auto* j = m_dep_manager.mk_leaf(e.j);
j = justify_monomial(j, monomial(e.l));
j = justify_monomial(j, monomial(e.r));
return j;
}
justification::dependency* ac_plugin::justify_monomial(justification::dependency* j, monomial_t const& m) {
for (auto n : m)
if (n->root->n != n->n)
j = m_dep_manager.mk_join(j, m_dep_manager.mk_leaf(justification::equality(n->root->n, n->n)));
return j;
}
justification ac_plugin::join(justification j, unsigned eq) {
return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), justify_equation(eq)));
}
}