z3-z3-4.13.0.src.ast.normal_forms.pull_quant.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2007 Microsoft Corporation
Module Name:
pull_quant.cpp
Abstract:
Pull nested quantifiers.
Author:
Leonardo (leonardo) 2008-01-20
Notes:
--*/
#include "ast/normal_forms/pull_quant.h"
#include "ast/rewriter/var_subst.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
struct pull_quant::imp {
struct rw_cfg : public default_rewriter_cfg {
ast_manager & m;
shift_vars m_shift;
rw_cfg(ast_manager & m):
m(m),
m_shift(m) {
}
bool pull_quant1_core(func_decl * d, unsigned num_children, expr * const * children, expr_ref & result) {
ptr_buffer var_sorts;
buffer var_names;
symbol qid;
int w = INT_MAX;
// The input formula is in Skolem normal form...
// So all children are forall (positive context) or exists (negative context).
// Remark: (AND a1 ...) may be represented (NOT (OR (NOT a1) ...)))
// So, when pulling a quantifier over a NOT, it becomes an exists.
if (m.is_not(d)) {
SASSERT(num_children == 1);
expr * child = children[0];
if (is_quantifier(child) && (is_forall(child) || is_exists(child))) {
quantifier * q = to_quantifier(child);
expr * body = q->get_expr();
quantifier_kind k = q->get_kind() == forall_k ? exists_k : forall_k;
result = m.update_quantifier(q, k, mk_not(m, body));
return true;
}
else {
return false;
}
}
bool found_quantifier = false;
bool forall_children = false;
for (unsigned i = 0; i < num_children; i++) {
expr * child = children[i];
if (is_quantifier(child) && !is_lambda(child)) {
if (!found_quantifier && (is_forall(child) || is_exists(child))) {
found_quantifier = true;
forall_children = is_forall(child);
}
else if (forall_children != is_forall(child))
return false;
quantifier * nested_q = to_quantifier(child);
if (var_sorts.empty()) {
// use the qid of one of the nested quantifiers.
qid = nested_q->get_qid();
}
w = std::min(w, nested_q->get_weight());
for (unsigned j = nested_q->get_num_decls(); j-- > 0; ) {
var_sorts.push_back(nested_q->get_decl_sort(j));
symbol s = nested_q->get_decl_name(j);
if (std::find(var_names.begin(), var_names.end(), s) != var_names.end())
var_names.push_back(m.mk_fresh_var_name(s.is_numerical() ? nullptr : s.bare_str()));
else
var_names.push_back(s);
}
}
}
if (!var_sorts.empty()) {
SASSERT(found_quantifier);
// adjust the variable ids in formulas in new_children
expr_ref_buffer new_adjusted_children(m);
expr_ref adjusted_child(m);
unsigned num_decls = var_sorts.size();
unsigned shift_amount = 0;
TRACE("pull_quant", tout << "Result num decls:" << num_decls << "\n";);
for (unsigned i = 0; i < num_children; i++) {
expr * child = children[i];
if (!is_quantifier(child)) {
// increment the free variables in child by num_decls because
// child will be in the scope of num_decls bound variables.
m_shift(child, num_decls, adjusted_child);
TRACE("pull_quant", tout << "shifted by: " << num_decls << "\n" <<
mk_pp(child, m) << "\n---->\n" << mk_pp(adjusted_child, m) << "\n";);
}
else {
quantifier * nested_q = to_quantifier(child);
SASSERT(num_decls >= nested_q->get_num_decls());
// Assume nested_q is of the form
// forall xs. P(xs, ys)
// where xs (ys) represents the set of bound (free) variables.
//
// - the index of the variables xs must be increased by shift_amount.
// That is, the number of new bound variables that will precede the bound
// variables xs.
//
// - the index of the variables ys must be increased by num_decls - nested_q->get_num_decls.
// That is, the total number of new bound variables that will be in the scope
// of nested_q->get_expr().
m_shift(nested_q->get_expr(),
nested_q->get_num_decls(), // bound for shift1/shift2
num_decls - nested_q->get_num_decls(), // shift1 (shift by this amount if var idx >= bound)
shift_amount, // shift2 (shift by this amount if var idx < bound)
adjusted_child);
TRACE("pull_quant", tout << "shifted bound: " << nested_q->get_num_decls() << " shift1: " << shift_amount <<
" shift2: " << (num_decls - nested_q->get_num_decls()) << "\n" << mk_pp(nested_q->get_expr(), m) <<
"\n---->\n" << mk_pp(adjusted_child, m) << "\n";);
shift_amount += nested_q->get_num_decls();
}
new_adjusted_children.push_back(adjusted_child);
}
// Remark: patterns are ignored.
// This is ok, since this functor is used in one of the following cases:
//
// 1) Superposition calculus is being used, so the
// patterns are useless.
//
// 2) No patterns were provided, and the functor is used
// to increase the effectiveness of the pattern inference
// procedure.
//
// 3) MBQI
std::reverse(var_sorts.begin(), var_sorts.end());
std::reverse(var_names.begin(), var_names.end());
result = m.mk_quantifier(forall_children ? forall_k : exists_k,
var_sorts.size(),
var_sorts.data(),
var_names.data(),
m.mk_app(d, new_adjusted_children.size(), new_adjusted_children.data()),
w,
qid);
return true;
}
else {
SASSERT(!found_quantifier);
return false;
}
}
void pull_quant1(func_decl * d, unsigned num_children, expr * const * children, expr_ref & result) {
if (!pull_quant1_core(d, num_children, children, result)) {
result = m.mk_app(d, num_children, children);
}
}
void pull_quant1_core(quantifier * q, expr * new_expr, expr_ref & result) {
// The original formula was in SNF, so the original quantifiers must be universal.
SASSERT(is_forall(q));
SASSERT(is_forall(new_expr));
quantifier * nested_q = to_quantifier(new_expr);
ptr_buffer var_sorts;
buffer var_names;
var_sorts.append(q->get_num_decls(), const_cast(q->get_decl_sorts()));
var_sorts.append(nested_q->get_num_decls(), const_cast(nested_q->get_decl_sorts()));
var_names.append(q->get_num_decls(), const_cast(q->get_decl_names()));
var_names.append(nested_q->get_num_decls(), const_cast(nested_q->get_decl_names()));
// Remark: patterns are ignored.
// See comment in reduce1_app
result = m.mk_forall(var_sorts.size(),
var_sorts.data(),
var_names.data(),
nested_q->get_expr(),
std::min(q->get_weight(), nested_q->get_weight()),
m.is_lambda_def(q) ? symbol("pulled-lambda") : q->get_qid());
}
void pull_quant1(quantifier * q, expr * new_expr, expr_ref & result) {
// The original formula was in SNF, so the original quantifiers must be universal.
SASSERT(is_forall(q));
if (is_forall(new_expr)) {
pull_quant1_core(q, new_expr, result);
}
else {
SASSERT(!is_quantifier(new_expr));
result = m.update_quantifier(q, new_expr);
}
}
void pull_quant1(expr * n, expr_ref & result) {
if (is_app(n))
pull_quant1(to_app(n)->get_decl(), to_app(n)->get_num_args(), to_app(n)->get_args(), result);
else if (is_quantifier(n))
pull_quant1(to_quantifier(n), to_quantifier(n)->get_expr(), result);
else
result = n;
}
// Code for proof generation...
void pull_quant2(expr * n, expr_ref & r, proof_ref & pr) {
pr = nullptr;
if (is_app(n)) {
expr_ref_buffer new_args(m);
expr_ref new_arg(m);
ptr_buffer proofs;
for (expr * arg : *to_app(n)) {
pull_quant1(arg , new_arg);
new_args.push_back(new_arg);
if (new_arg != arg)
proofs.push_back(m.mk_pull_quant(arg, to_quantifier(new_arg)));
}
pull_quant1(to_app(n)->get_decl(), new_args.size(), new_args.data(), r);
if (m.proofs_enabled()) {
app * r1 = m.mk_app(to_app(n)->get_decl(), new_args.size(), new_args.data());
proof * p1 = proofs.empty() ? nullptr : m.mk_congruence(to_app(n), r1, proofs.size(), proofs.data());
proof * p2 = r1 == r ? nullptr : m.mk_pull_quant(r1, to_quantifier(r));
pr = m.mk_transitivity(p1, p2);
}
}
else if (is_quantifier(n)) {
expr_ref new_expr(m);
pull_quant1(to_quantifier(n)->get_expr(), new_expr);
pull_quant1(to_quantifier(n), new_expr, r);
if (m.proofs_enabled()) {
quantifier * q1 = m.update_quantifier(to_quantifier(n), new_expr);
proof * p1 = nullptr;
if (n != q1) {
proof * p0 = m.mk_pull_quant(n, to_quantifier(new_expr));
p1 = m.mk_quant_intro(to_quantifier(n), q1, p0);
}
proof * p2 = q1 == r ? nullptr : m.mk_pull_quant(q1, to_quantifier(r));
pr = m.mk_transitivity(p1, p2);
}
}
else {
r = n;
}
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
if (m.is_not(f) && m.is_not(args[0])) {
result = to_app(args[0])->get_arg(0);
return BR_REWRITE1;
}
if (!m.is_or(f) && !m.is_and(f) && !m.is_not(f))
return BR_FAILED;
if (!pull_quant1_core(f, num, args, result))
return BR_FAILED;
if (m.proofs_enabled()) {
result_pr = m.mk_pull_quant(m.mk_app(f, num, args),
to_quantifier(result.get()));
}
return BR_DONE;
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
if (is_exists(old_q)) {
result = mk_not(m, new_body);
result = m.mk_not(m.update_quantifier(old_q, forall_k, result));
if (m.proofs_enabled())
m.mk_rewrite(old_q, result);
return true;
}
if (is_lambda(old_q))
return false;
if (!is_forall(new_body))
return false;
pull_quant1_core(old_q, new_body, result);
if (m.proofs_enabled())
result_pr = m.mk_pull_quant(old_q, to_quantifier(result.get()));
return true;
}
};
struct rw : public rewriter_tpl {
rw_cfg m_cfg;
rw(ast_manager & m):
rewriter_tpl(m, m.proofs_enabled(), m_cfg),
m_cfg(m) {
}
};
rw m_rw;
imp(ast_manager & m):
m_rw(m) {
}
void operator()(expr * n, expr_ref & r, proof_ref & p) {
m_rw(n, r, p);
}
};
pull_quant::pull_quant(ast_manager & m) {
m_imp = alloc(imp, m);
}
pull_quant::~pull_quant() {
dealloc(m_imp);
}
void pull_quant::operator()(expr * n, expr_ref & r, proof_ref & p) {
(*m_imp)(n, r, p);
}
void pull_quant::reset() {
m_imp->m_rw.reset();
}
void pull_quant::pull_quant2(expr * n, expr_ref & r, proof_ref & pr) {
m_imp->m_rw.cfg().pull_quant2(n, r, pr);
}
struct pull_nested_quant::imp {
struct rw_cfg : public default_rewriter_cfg {
pull_quant m_pull;
expr_ref m_r;
proof_ref m_pr;
rw_cfg(ast_manager & m):m_pull(m), m_r(m), m_pr(m) {}
bool get_subst(expr * s, expr * & t, proof * & t_pr) {
if (!is_quantifier(s))
return false;
m_pull(to_quantifier(s), m_r, m_pr);
t = m_r.get();
t_pr = m_pr.get();
return true;
}
};
struct rw : public rewriter_tpl {
rw_cfg m_cfg;
rw(ast_manager & m):
rewriter_tpl(m, m.proofs_enabled(), m_cfg),
m_cfg(m) {
}
};
rw m_rw;
imp(ast_manager & m):
m_rw(m) {
}
void operator()(expr * n, expr_ref & r, proof_ref & p) {
m_rw(n, r, p);
}
};
pull_nested_quant::pull_nested_quant(ast_manager & m) {
m_imp = alloc(imp, m);
}
pull_nested_quant::~pull_nested_quant() {
dealloc(m_imp);
}
void pull_nested_quant::operator()(expr * n, expr_ref & r, proof_ref & p) {
(*m_imp)(n, r, p);
}
void pull_nested_quant::reset() {
m_imp->m_rw.reset();
}