z3-z3-4.13.0.src.ast.rewriter.bv_rewriter.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
bv_rewriter.cpp
Abstract:
Basic rewriting rules for bit-vectors
Author:
Leonardo (leonardo) 2011-04-14
Notes:
--*/
#include "params/bv_rewriter_params.hpp"
#include "ast/rewriter/bv_rewriter.h"
#include "ast/rewriter/poly_rewriter_def.h"
#include "ast/rewriter/bool_rewriter.h"
#include "ast/ast_lt.h"
#include "ast/ast_pp.h"
void bv_rewriter::updt_local_params(params_ref const & _p) {
bv_rewriter_params p(_p);
m_hi_div0 = p.hi_div0();
m_elim_sign_ext = p.elim_sign_ext();
m_mul2concat = p.mul2concat();
m_bit2bool = p.bit2bool();
m_blast_eq_value = p.blast_eq_value();
m_split_concat_eq = p.split_concat_eq();
m_bvnot_simpl = p.bv_not_simpl();
m_bv_sort_ac = p.bv_sort_ac();
m_extract_prop = p.bv_extract_prop();
m_ite2id = p.bv_ite2id();
m_le_extra = p.bv_le_extra();
m_le2extract = p.bv_le2extract();
set_sort_sums(p.bv_sort_ac());
}
void bv_rewriter::updt_params(params_ref const & p) {
poly_rewriter::updt_params(p);
updt_local_params(p);
}
void bv_rewriter::get_param_descrs(param_descrs & r) {
poly_rewriter::get_param_descrs(r);
bv_rewriter_params::collect_param_descrs(r);
}
br_status bv_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_family_id() == get_fid());
br_status st = BR_FAILED;
switch(f->get_decl_kind()) {
case OP_BIT0: SASSERT(num_args == 0); result = mk_zero(1); return BR_DONE;
case OP_BIT1: SASSERT(num_args == 0); result = mk_one(1); return BR_DONE;
case OP_ULEQ:
SASSERT(num_args == 2);
st = mk_ule(args[0], args[1], result);
break;
case OP_UGEQ:
SASSERT(num_args == 2);
st = mk_uge(args[0], args[1], result);
break;
case OP_ULT:
SASSERT(num_args == 2);
st = mk_ult(args[0], args[1], result);
break;
case OP_UGT:
SASSERT(num_args == 2);
st = mk_ult(args[1], args[0], result);
break;
case OP_SLEQ:
SASSERT(num_args == 2);
st = mk_sle(args[0], args[1], result);
break;
case OP_SGEQ:
SASSERT(num_args == 2);
st = mk_sge(args[0], args[1], result);
break;
case OP_SLT:
SASSERT(num_args == 2);
st = mk_slt(args[0], args[1], result);
break;
case OP_SGT:
SASSERT(num_args == 2);
st = mk_slt(args[1], args[0], result);
break;
case OP_BADD:
SASSERT(num_args > 0);
st = mk_bv_add(num_args, args, result);
break;
case OP_BMUL:
SASSERT(num_args > 0);
st = mk_bv_mul(num_args, args, result);
break;
case OP_BSUB:
SASSERT(num_args > 0);
st = mk_sub(num_args, args, result);
break;
case OP_BNEG:
SASSERT(num_args == 1);
st = mk_uminus(args[0], result);
break;
case OP_BNEG_OVFL:
SASSERT(num_args == 1);
return mk_bvneg_overflow(args[0], result);
case OP_BSHL:
SASSERT(num_args == 2);
return mk_bv_shl(args[0], args[1], result);
case OP_BLSHR:
SASSERT(num_args == 2);
return mk_bv_lshr(args[0], args[1], result);
case OP_BASHR:
SASSERT(num_args == 2);
return mk_bv_ashr(args[0], args[1], result);
case OP_BSDIV:
SASSERT(num_args == 2);
return mk_bv_sdiv(args[0], args[1], result);
case OP_BUDIV:
SASSERT(num_args == 2);
return mk_bv_udiv(args[0], args[1], result);
case OP_BSREM:
SASSERT(num_args == 2);
return mk_bv_srem(args[0], args[1], result);
case OP_BUREM:
SASSERT(num_args == 2);
return mk_bv_urem(args[0], args[1], result);
case OP_BSMOD:
SASSERT(num_args == 2);
return mk_bv_smod(args[0], args[1], result);
case OP_BSDIV_I:
SASSERT(num_args == 2);
return mk_bv_sdiv_i(args[0], args[1], result);
case OP_BUDIV_I:
SASSERT(num_args == 2);
return mk_bv_udiv_i(args[0], args[1], result);
case OP_BSREM_I:
SASSERT(num_args == 2);
return mk_bv_srem_i(args[0], args[1], result);
case OP_BUREM_I:
SASSERT(num_args == 2);
return mk_bv_urem_i(args[0], args[1], result);
case OP_BSMOD_I:
SASSERT(num_args == 2);
return mk_bv_smod_i(args[0], args[1], result);
case OP_CONCAT:
return mk_concat(num_args, args, result);
case OP_EXTRACT:
SASSERT(num_args == 1);
return mk_extract(m_util.get_extract_high(f), m_util.get_extract_low(f), args[0], result);
case OP_REPEAT:
SASSERT(num_args == 1);
return mk_repeat(f->get_parameter(0).get_int(), args[0], result);
case OP_ZERO_EXT:
SASSERT(num_args == 1);
return mk_zero_extend(f->get_parameter(0).get_int(), args[0], result);
case OP_SIGN_EXT:
SASSERT(num_args == 1);
return mk_sign_extend(f->get_parameter(0).get_int(), args[0], result);
case OP_BOR:
return mk_bv_or(num_args, args, result);
case OP_BXOR:
return mk_bv_xor(num_args, args, result);
case OP_BNOT:
SASSERT(num_args == 1);
return mk_bv_not(args[0], result);
case OP_BAND:
return mk_bv_and(num_args, args, result);
case OP_BNAND:
return mk_bv_nand(num_args, args, result);
case OP_BNOR:
return mk_bv_nor(num_args, args, result);
case OP_BXNOR:
return mk_bv_xnor(num_args, args, result);
case OP_ROTATE_LEFT:
SASSERT(num_args == 1);
return mk_bv_rotate_left(f->get_parameter(0).get_int(), args[0], result);
case OP_ROTATE_RIGHT:
SASSERT(num_args == 1);
return mk_bv_rotate_right(f->get_parameter(0).get_int(), args[0], result);
case OP_EXT_ROTATE_LEFT:
SASSERT(num_args == 2);
return mk_bv_ext_rotate_left(args[0], args[1], result);
case OP_EXT_ROTATE_RIGHT:
SASSERT(num_args == 2);
return mk_bv_ext_rotate_right(args[0], args[1], result);
case OP_BV2INT:
SASSERT(num_args == 1);
return mk_bv2int(args[0], result);
case OP_INT2BV:
SASSERT(num_args == 1);
return mk_int2bv(m_util.get_bv_size(f->get_range()), args[0], result);
case OP_BREDOR:
SASSERT(num_args == 1);
return mk_bv_redor(args[0], result);
case OP_BREDAND:
SASSERT(num_args == 1);
return mk_bv_redand(args[0], result);
case OP_BCOMP:
SASSERT(num_args == 2);
return mk_bv_comp(args[0], args[1], result);
case OP_MKBV:
return mk_mkbv(num_args, args, result);
case OP_BIT2BOOL:
SASSERT(num_args == 1);
return mk_bit2bool(args[0], f->get_parameter(0).get_int(), result);
case OP_BSMUL_NO_OVFL:
return mk_bvsmul_no_overflow(num_args, args, true, result);
case OP_BSMUL_NO_UDFL:
return mk_bvsmul_no_overflow(num_args, args, false, result);
case OP_BUMUL_NO_OVFL:
return mk_bvumul_no_overflow(num_args, args, result);
case OP_BSMUL_OVFL:
return mk_bvsmul_overflow(num_args, args, result);
case OP_BUMUL_OVFL:
return mk_bvumul_overflow(num_args, args, result);
case OP_BSDIV_OVFL:
return mk_bvsdiv_overflow(num_args, args, result);
case OP_BUADD_OVFL:
return mk_bvuadd_overflow(num_args, args, result);
case OP_BSADD_OVFL:
return mk_bvsadd_over_underflow(num_args, args, result);
case OP_BUSUB_OVFL:
return mk_bvusub_underflow(num_args, args, result);
case OP_BSSUB_OVFL:
return mk_bvssub_under_overflow(num_args, args, result);
default:
return BR_FAILED;
}
CTRACE("bv", st != BR_FAILED, tout << mk_pp(f, m) << "\n";
for (unsigned i = 0; i < num_args; ++i)
tout << " " << mk_bounded_pp(args[i], m) << "\n";
tout << mk_bounded_pp(result, m, 3) << "\n");
return st;
}
br_status bv_rewriter::mk_ule(expr * a, expr * b, expr_ref & result) {
return mk_leq_core(false, a, b, result);
}
br_status bv_rewriter::mk_uge(expr * a, expr * b, expr_ref & result) {
br_status st = mk_ule(b, a, result);
if (st != BR_FAILED)
return st;
result = m_util.mk_ule(b, a);
return BR_DONE;
}
br_status bv_rewriter::mk_ult(expr * a, expr * b, expr_ref & result) {
result = m.mk_not(m_util.mk_ule(b, a));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_sle(expr * a, expr * b, expr_ref & result) {
return mk_leq_core(true, a, b, result);
}
br_status bv_rewriter::mk_sge(expr * a, expr * b, expr_ref & result) {
br_status st = mk_sle(b, a, result);
if (st != BR_FAILED)
return st;
result = m_util.mk_sle(b, a);
return BR_DONE;
}
br_status bv_rewriter::mk_slt(expr * a, expr * b, expr_ref & result) {
result = m.mk_not(m_util.mk_sle(b, a));
return BR_REWRITE2;
}
// short-circuited concat
expr * bv_rewriter::concat(unsigned num_args, expr * const * args) {
SASSERT(num_args);
switch (num_args) {
case 0: return m_util.mk_concat(num_args, args);
case 1: return args[0];
default: return m_util.mk_concat(num_args, args);
}
}
// finds a commonality in sums, e.g. 2 + x + y and 5 + x + y
bool bv_rewriter::are_eq_upto_num(expr * _a, expr * _b,
expr_ref& common,
numeral& a0_val, numeral& b0_val) {
const bool aadd = m_util.is_bv_add(_a);
const bool badd = m_util.is_bv_add(_b);
const bool has_num_a = aadd && to_app(_a)->get_num_args() && is_numeral(to_app(_a)->get_arg(0));
const bool has_num_b = badd && to_app(_b)->get_num_args() && is_numeral(to_app(_b)->get_arg(0));
a0_val = numeral::zero();
b0_val = numeral::zero();
if (!aadd && !badd) {
if (_a == _b) {
common = _a;
return true;
} else {
return false;
}
}
if (!aadd && badd) {
if (!is_app(_a) || to_app(_a)->get_num_args() != 2 || !has_num_a || to_app(_a)->get_arg(0) != _b)
return false;
common = _b;
return true;
}
if (aadd && !badd) {
if (!is_app(_b) || to_app(_b)->get_num_args() != 2 || !has_num_b || to_app(_b)->get_arg(0) != _a)
return false;
common = _a;
return true;
}
SASSERT(aadd && badd);
app * const a = to_app(_a);
app * const b = to_app(_b);
const unsigned numa = a->get_num_args();
const unsigned numb = b->get_num_args();
if (!numa || !numb) return false;
if ((numa - (has_num_a ? 1 : 0)) != (numb - (has_num_b ? 1 : 0))) return false;
unsigned ai = has_num_a ? 1 : 0;
unsigned bi = has_num_b ? 1 : 0;
while (ai < numa) {
if (a->get_arg(ai) != b->get_arg(bi)) return false;
++ai;
++bi;
}
a0_val = numeral::zero();
b0_val = numeral::zero();
const unsigned sz = m_util.get_bv_size(a);
unsigned a0_sz(sz), b0_sz(sz);
if (has_num_a) is_numeral(a->get_arg(0), a0_val, a0_sz);
if (has_num_b) is_numeral(b->get_arg(0), b0_val, b0_sz);
SASSERT(a0_sz == m_util.get_bv_size(a) && b0_sz == m_util.get_bv_size(a));
if (has_num_a && numa > 2) {
common = m.mk_app(m_util.get_fid(), add_decl_kind(), numa - 1, a->get_args() + 1);
}
else {
common = has_num_a ? a->get_arg(1) : a;
}
return true;
}
// simplifies expressions as (bvuleq (X + c1) (X + c2)) for some common expression X and numerals c1, c2
br_status bv_rewriter::rw_leq_overflow(bool is_signed, expr * a, expr * b, expr_ref & result) {
if (is_signed) return BR_FAILED;
expr_ref common(m);
numeral a0_val, b0_val;
if (!are_eq_upto_num(a, b, common, a0_val, b0_val)) return BR_FAILED;
SASSERT(a0_val.is_nonneg() && b0_val.is_nonneg());
const unsigned sz = m_util.get_bv_size(a);
if (a0_val == b0_val) {
result = m.mk_true();
return BR_DONE;
}
if (a0_val < b0_val) {
result = m_util.mk_ule(m_util.mk_numeral(b0_val - a0_val, sz), b);
return BR_REWRITE2;
}
SASSERT(a0_val > b0_val);
SASSERT(!a0_val.is_zero());
const numeral lower = rational::power_of_two(sz) - a0_val;
const numeral upper = rational::power_of_two(sz) - b0_val - numeral::one();
if (lower == upper) {
result = m.mk_eq(common, mk_numeral(lower, sz));
}
else if (b0_val.is_zero()) {
result = m_util.mk_ule(mk_numeral(lower, sz), common);
}
else {
SASSERT(lower.is_pos());
result = m.mk_and(m_util.mk_ule(mk_numeral(lower, sz), common),
m_util.mk_ule(common, mk_numeral(upper, sz)));
}
return BR_REWRITE2;
}
// simplification for leq comparison between two concatenations
br_status bv_rewriter::rw_leq_concats(bool is_signed, expr * _a, expr * _b, expr_ref & result) {
if (!m_util.is_concat(_a) || !m_util.is_concat(_b))
return BR_FAILED;
const app * const a = to_app(_a);
const app * const b = to_app(_b);
const unsigned numa = a->get_num_args();
const unsigned numb = b->get_num_args();
const unsigned num_min = std::min(numa, numb);
if (numa && numb) { // first arg numeral
numeral af, bf;
unsigned af_sz, bf_sz;
if ( is_numeral(a->get_arg(0), af, af_sz)
&& is_numeral(b->get_arg(0), bf, bf_sz) ) {
const unsigned sz_min = std::min(af_sz, bf_sz);
const numeral hi_af = m_util.norm(af_sz > sz_min ? div(af, rational::power_of_two(af_sz - sz_min)) : af,
sz_min, is_signed);
const numeral hi_bf = m_util.norm(bf_sz > sz_min ? div(bf, rational::power_of_two(bf_sz - sz_min)) : bf,
sz_min, is_signed);
if (hi_af != hi_bf) {
result = hi_af < hi_bf ? m.mk_true() : m.mk_false();
return BR_DONE;
}
expr_ref new_a(m);
expr_ref new_b(m);
if (af_sz > sz_min) {
ptr_buffer new_args;
new_args.push_back(mk_numeral(af, af_sz - sz_min));
for (unsigned i = 1; i < numa; ++i) new_args.push_back(a->get_arg(i));
new_a = concat(new_args.size(), new_args.data());
} else {
new_a = concat(numa - 1, a->get_args() + 1);
}
if (bf_sz > sz_min) {
ptr_buffer new_args;
new_args.push_back(mk_numeral(bf, bf_sz - sz_min));
for (unsigned i = 1; i < numb; ++i) new_args.push_back(b->get_arg(i));
new_b = concat(new_args.size(), new_args.data());
} else {
new_b = concat(numb - 1, b->get_args() + 1);
}
result = m_util.mk_ule(new_a, new_b);
return BR_REWRITE2;
}
}
{ // common prefix
unsigned common = 0;
while (common < num_min && m.are_equal(a->get_arg(common), b->get_arg(common))) ++common;
SASSERT((common == numa) == (common == numb));
if (common == numa) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m.mk_true();
return BR_DONE;
}
if (common > 0) {
result = m_util.mk_ule(concat(numa - common, a->get_args() + common),
concat(numb - common, b->get_args() + common));
return BR_REWRITE2;
}
}
{ // common postfix
unsigned new_numa = a->get_num_args();
unsigned new_numb = b->get_num_args();
while (new_numa && new_numb) {
expr * const last_a = a->get_arg(new_numa - 1);
expr * const last_b = b->get_arg(new_numb - 1);
if (!m.are_equal(last_a, last_b)) break;
new_numa--;
new_numb--;
}
if (new_numa == 0) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m.mk_true();
return BR_DONE;
}
if (new_numa != numa) {
result = is_signed ? m_util.mk_sle(concat(new_numa, a->get_args()), concat(new_numb, b->get_args()))
: m_util.mk_ule(concat(new_numa, a->get_args()), concat(new_numb, b->get_args()));
return BR_REWRITE2;
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref & result) {
numeral r1, r2, r3;
unsigned sz;
bool is_num1 = is_numeral(a, r1, sz);
bool is_num2 = is_numeral(b, r2, sz);
if (a == b) {
result = m.mk_true();
return BR_DONE;
}
if (is_num1)
r1 = m_util.norm(r1, sz, is_signed);
if (is_num2)
r2 = m_util.norm(r2, sz, is_signed);
if (is_num1 && is_num2) {
result = m.mk_bool_val(r1 <= r2);
return BR_DONE;
}
numeral lower, upper;
if (is_num1 || is_num2) {
if (is_signed) {
lower = - rational::power_of_two(sz - 1);
upper = rational::power_of_two(sz - 1) - numeral(1);
}
else {
lower = numeral(0);
upper = rational::power_of_two(sz) - numeral(1);
}
}
if (is_num2) {
if (r2 == lower) {
result = m.mk_eq(a, b);
return BR_REWRITE1;
}
if (r2 == upper) {
result = m.mk_true();
return BR_DONE;
}
}
if (is_num1) {
// 0 <= b is true
if (r1 == lower) {
result = m.mk_true();
return BR_DONE;
}
// 2^n-1 <= b is a = b
if (r1 == upper) {
result = m.mk_eq(a, b);
return BR_REWRITE1;
}
}
expr* a1, *a2, *a3, *a4, *a5, *a6;
// (bvsle (- x (srem x c1)) c2) -> (bvsle x (+ c1 c2 - 1))
// (bvsle (+ x (* -1 (srem_i x c1))) c2)
// pre: (and (> c1 0) (> c2 0) (= c2 % c1 0) (<= (+ c1 c2 -1) max_int))
if (is_signed && is_num2 &&
m_util.is_bv_add(a, a1, a2) &&
m_util.is_bv_mul(a2, a3, a4) && is_numeral(a3, r1, sz) &&
m_util.norm(r1, sz, is_signed).is_minus_one() &&
m_util.is_bv_sremi(a4, a5, a6) && is_numeral(a6, r1, sz) &&
(r1 = m_util.norm(r1, sz, is_signed), r1.is_pos()) &&
r2.is_pos() &&
(a1 == a5) &&
(r2 % r1).is_zero() && r1 + r2 - rational::one() < rational::power_of_two(sz-1)) {
result = m_util.mk_sle(a1, m_util.mk_numeral(r1 + r2 - rational::one(), sz));
return BR_REWRITE2;
}
// (bvule r1 (+ r2 a)) ->
// for r1 = r2, (bvule a (2^n - r2 - 1))
// other cases r1 > r2, r1 < r2 are TBD
if (!is_signed && is_num1 && m_util.is_bv_add(b, a1, a2) && is_numeral(a1, r2, sz)) {
result = m_util.mk_ule(a2, m_util.mk_numeral(-r2 - 1, sz));
if (r1 > r2)
result = m.mk_and(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
else if (r1 < r2)
result = m.mk_or(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
return BR_REWRITE2;
}
if (m_le_extra) {
const br_status cst = rw_leq_concats(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_pp(a, m, 2) << "\n" << mk_pp(b, m, 2) << "\n--->\n"<< mk_pp(result, m, 2) << "\n";);
return cst;
}
}
if (m_le_extra) {
const br_status cst = rw_leq_overflow(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_pp(a, m, 2) << "\n" << mk_pp(b, m, 2) << "\n--->\n"<< mk_pp(result, m, 2) << "\n";);
return cst;
}
}
#if 0
if (!is_signed && m_util.is_concat(b) && to_app(b)->get_num_args() == 2 && m_util.is_zero(to_app(b)->get_arg(0))) {
//
// a <=_u (concat 0 c) ---> a[h:l] = 0 && a[l-1:0] <=_u c
//
expr * b_1 = to_app(b)->get_arg(0);
expr * b_2 = to_app(b)->get_arg(1);
unsigned sz1 = get_bv_size(b_1);
unsigned sz2 = get_bv_size(b_2);
result = m.mk_and(m.mk_eq(m_mk_extract(sz2+sz1-1, sz2, a), b_1),
m_util.mk_ule(m_mk_extract(sz2-1, 0, a), b_2));
return BR_REWRITE3;
}
#else
if (!is_signed) {
// Extended version of the rule above using is_zero_bit.
// It also catches examples atoms such as:
//
// a <=_u #x000f
//
unsigned bv_sz = m_util.get_bv_size(b);
unsigned i = bv_sz;
unsigned first_non_zero = UINT_MAX;
while (i > 0) {
--i;
if (!is_zero_bit(b, i)) {
first_non_zero = i;
break;
}
}
if (first_non_zero == UINT_MAX) {
// all bits are zero
result = m.mk_eq(a, mk_zero(bv_sz));
return BR_REWRITE1;
}
else if (first_non_zero < bv_sz - 1 && m_le2extract) {
result = m.mk_and(m.mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), mk_zero(bv_sz - first_non_zero - 1)),
m_util.mk_ule(m_mk_extract(first_non_zero, 0, a), m_mk_extract(first_non_zero, 0, b)));
return BR_REWRITE3;
}
}
#endif
// Investigate if we need:
//
// k <=_s (concat 0 a) <=> (k[u:l] = 0 && k[l-1:0] <=_u a) || k[u:u] = bv1
//
// (concat 0 a) <=_s k <=> k[u:u] = bv0 && (k[u:l] != 0 || a <=_u k[l-1:0])
//
// (concat 0 a) <=_u k <=> k[u:l] != 0 || a <=_u k[l-1:0]
//
return BR_FAILED;
}
// attempt to chop off bits that are above the position high for bv_mul and bv_add,
// returns how many bits were chopped off
// e.g. (bvadd(concat #b11 p) #x1)) with high=1, returns 2 and sets result = p + #b01
// the sz of results is the sz of arg minus the return value
unsigned bv_rewriter::propagate_extract(unsigned high, expr * arg, expr_ref & result) {
if (!m_util.is_bv_add(arg) && !m_util.is_bv_mul(arg))
return 0;
const unsigned sz = m_util.get_bv_size(arg);
const unsigned to_remove = high + 1 < sz ? sz - high - 1 : 0;
if (to_remove == 0)
return 0; // high goes to the top, nothing to do
const app * const a = to_app(arg);
const unsigned num = a->get_num_args();
bool all_numerals = true;
unsigned removable = to_remove;
numeral val;
unsigned curr_first_sz = -1;
// calculate how much can be removed
for (unsigned i = 0; i < num; i++) {
expr * const curr = a->get_arg(i);
const bool curr_is_conc = m_util.is_concat(curr);
if (curr_is_conc && to_app(curr)->get_num_args() == 0) continue;
expr * const curr_first = curr_is_conc ? to_app(curr)->get_arg(0) : curr;
if (!all_numerals) {
if (removable != m_util.get_bv_size(curr_first))
return 0;
continue;
}
if (is_numeral(curr_first, val, curr_first_sz)) {
removable = std::min(removable, curr_first_sz);
} else {
all_numerals = false;
curr_first_sz = m_util.get_bv_size(curr_first);
if (curr_first_sz > removable) return 0;
removable = curr_first_sz;
}
if (removable == 0) return 0;
}
// perform removal
SASSERT(removable <= to_remove);
ptr_buffer new_args;
ptr_buffer new_concat_args;
for (unsigned i = 0; i < num; i++) {
expr * const curr = a->get_arg(i);
const bool curr_is_conc = m_util.is_concat(curr);
if (curr_is_conc && to_app(curr)->get_num_args() == 0) continue;
expr * const curr_first = curr_is_conc ? to_app(curr)->get_arg(0) : curr;
expr * new_first = nullptr;
if (is_numeral(curr_first, val, curr_first_sz)) {
SASSERT(curr_first_sz >= removable);
const unsigned new_num_sz = curr_first_sz - removable;
new_first = new_num_sz ? mk_numeral(val, new_num_sz) : nullptr;
}
expr * new_arg = nullptr;
if (curr_is_conc) {
const unsigned conc_num = to_app(curr)->get_num_args();
if (new_first) {
new_concat_args.reset();
new_concat_args.push_back(new_first);
for (unsigned j = 1; j < conc_num; ++j)
new_concat_args.push_back(to_app(curr)->get_arg(j));
new_arg = m_util.mk_concat(new_concat_args.size(), new_concat_args.data());
} else {
// remove first element of concat
expr * const * const old_conc_args = to_app(curr)->get_args();
switch (conc_num) {
case 0: UNREACHABLE(); break;
case 1: new_arg = nullptr; break;
case 2: new_arg = to_app(curr)->get_arg(1); break;
default: new_arg = m_util.mk_concat(conc_num - 1, old_conc_args + 1);
}
}
} else {
new_arg = new_first;
}
if (new_arg) new_args.push_back(new_arg);
}
result = m.mk_app(get_fid(), a->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
SASSERT(m_util.is_bv(result));
return removable;
}
br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
if (low == 0 && high == sz - 1) {
result = arg;
return BR_DONE;
}
numeral v;
if (is_numeral(arg, v, sz)) {
sz = high - low + 1;
if (v.is_neg())
mod(v, rational::power_of_two(sz), v);
if (v.is_uint64()) {
uint64_t u = v.get_uint64();
uint64_t e = shift_right(u, low) & (shift_left(1ull, sz) - 1ull);
result = mk_numeral(numeral(e, numeral::ui64()), sz);
return BR_DONE;
}
div(v, rational::power_of_two(low), v);
result = mk_numeral(v, sz);
return BR_DONE;
}
// (extract[high:low] (extract[high2:low2] x)) == (extract[high+low2 : low+low2] x)
if (m_util.is_extract(arg)) {
unsigned low2 = m_util.get_extract_low(arg);
result = m_mk_extract(high + low2, low + low2, to_app(arg)->get_arg(0));
return BR_DONE;
}
// (extract (concat ....)) --> (concat (extract ...) ... (extract ...) )
if (m_util.is_concat(arg)) {
unsigned num = to_app(arg)->get_num_args();
unsigned idx = sz;
for (unsigned i = 0; i < num; i++) {
expr * curr = to_app(arg)->get_arg(i);
unsigned curr_sz = get_bv_size(curr);
idx -= curr_sz;
if (idx > high)
continue;
// found first argument
if (idx <= low) {
// result is a fragment of this argument
if (low == idx && high - idx == curr_sz - 1) {
result = curr;
return BR_DONE;
}
else {
result = m_mk_extract(high - idx, low - idx, curr);
return BR_REWRITE1;
}
}
else {
// look for remaining arguments
ptr_buffer new_args;
bool used_extract = false;
if (high - idx == curr_sz - 1) {
new_args.push_back(curr);
}
else {
used_extract = true;
new_args.push_back(m_mk_extract(high - idx, 0, curr));
}
for (unsigned j = i + 1; j < num; j++) {
curr = to_app(arg)->get_arg(j);
unsigned curr_sz = get_bv_size(curr);
idx -= curr_sz;
if (idx > low) {
new_args.push_back(curr);
continue;
}
if (idx == low) {
new_args.push_back(curr);
result = m_util.mk_concat(new_args.size(), new_args.data());
return used_extract ? BR_REWRITE2 : BR_DONE;
}
new_args.push_back(m_mk_extract(curr_sz - 1, low - idx, curr));
result = m_util.mk_concat(new_args.size(), new_args.data());
return BR_REWRITE2;
}
UNREACHABLE();
}
}
UNREACHABLE();
}
if (m_util.is_bv_not(arg) ||
m_util.is_bv_or(arg) ||
m_util.is_bv_xor(arg) ||
(low == 0 && (m_util.is_bv_add(arg) ||
m_util.is_bv_mul(arg)))) {
ptr_buffer new_args;
unsigned num = to_app(arg)->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * curr = to_app(arg)->get_arg(i);
new_args.push_back(m_mk_extract(high, low, curr));
}
result = m.mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
return BR_REWRITE2;
}
if (m_extract_prop && (high >= low)) {
expr_ref ep_res(m);
const unsigned ep_rm = propagate_extract(high, arg, ep_res);
if (ep_rm != 0) {
result = m_mk_extract(high, low, ep_res);
TRACE("extract_prop", tout << mk_pp(arg, m) << "\n[" << high <<"," << low << "]\n" << ep_rm << "---->\n"
<< mk_pp(result.get(), m) << "\n";);
return BR_REWRITE2;
}
}
// issue #2359 led to relaxing condition for propagating extract over ite.
// It is propagted inwards only in the case that it leads to at most one
// branch of ite to be expanded or if one of the expanded ite branches have a single
// reference count.
expr* c = nullptr, *t = nullptr, *e = nullptr;
if (m.is_ite(arg, c, t, e) &&
(t->get_ref_count() == 1 || e->get_ref_count() == 1 || !m.is_ite(t) || !m.is_ite(e))) {
result = m.mk_ite(c, m_mk_extract(high, low, t), m_mk_extract(high, low, e));
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_shl(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
unsigned sz;
if (is_numeral(arg2, r2, sz)) {
if (r2.is_zero()) {
// x << 0 == x
result = arg1;
return BR_DONE;
}
if (r2 >= numeral(bv_size)) {
result = mk_zero(bv_size);
return BR_DONE;
}
if (is_numeral(arg1, r1, sz)) {
if (bv_size <= 64) {
SASSERT(r1.is_uint64() && r2.is_uint64());
SASSERT(r2.get_uint64() < bv_size);
uint64_t r = shift_left(r1.get_uint64(), r2.get_uint64());
numeral rn(r, numeral::ui64());
rn = m_util.norm(rn, bv_size);
result = mk_numeral(rn, bv_size);
return BR_DONE;
}
SASSERT(r2 < numeral(bv_size));
SASSERT(r2.is_unsigned());
r1 = m_util.norm(r1 * rational::power_of_two(r2.get_unsigned()), bv_size);
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
SASSERT(r2.is_pos());
SASSERT(r2 < numeral(bv_size));
// (bvshl x k) -> (concat (extract [n-1-k:0] x) bv0:k)
unsigned k = r2.get_unsigned();
expr * new_args[2] = { m_mk_extract(bv_size - k - 1, 0, arg1),
mk_zero(k) };
result = m_util.mk_concat(2, new_args);
return BR_REWRITE2;
}
expr* x = nullptr, *y = nullptr;
if (m_util.is_bv_shl(arg1, x, y)) {
expr_ref sum(m_util.mk_bv_add(y, arg2), m);
expr_ref cond(m_util.mk_ule(y, sum), m);
result = m.mk_ite(cond,
m_util.mk_bv_shl(x, sum),
mk_zero(bv_size));
return BR_REWRITE3;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_lshr(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
unsigned sz;
if (is_numeral(arg2, r2, sz)) {
if (r2.is_zero()) {
// x >> 0 == x
result = arg1;
return BR_DONE;
}
if (r2 >= numeral(bv_size)) {
result = mk_zero(bv_size);
return BR_DONE;
}
if (is_numeral(arg1, r1, sz)) {
if (bv_size <= 64) {
SASSERT(r1.is_uint64());
SASSERT(r2.is_uint64());
uint64_t r = shift_right(r1.get_uint64(), r2.get_uint64());
numeral rn(r, numeral::ui64());
rn = m_util.norm(rn, bv_size);
result = mk_numeral(rn, bv_size);
return BR_DONE;
}
SASSERT(r2.is_unsigned());
unsigned sh = r2.get_unsigned();
div(r1, rational::power_of_two(sh), r1);
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
SASSERT(r2.is_pos());
SASSERT(r2 < numeral(bv_size));
// (bvlshr x k) -> (concat bv0:k (extract [n-1:k] x))
SASSERT(r2.is_unsigned());
unsigned k = r2.get_unsigned();
expr * new_args[2] = { mk_zero(k),
m_mk_extract(bv_size - 1, k, arg1) };
result = m_util.mk_concat(2, new_args);
return BR_REWRITE2;
}
if (arg1 == arg2) {
result = mk_zero(bv_size);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_ashr(expr * arg1, expr * arg2, expr_ref & result) {
numeral r1, r2;
unsigned bv_size = get_bv_size(arg1);
SASSERT(bv_size > 0);
bool is_num2 = is_numeral(arg2, r2, bv_size);
if (is_num2 && r2.is_zero()) {
result = arg1;
return BR_DONE;
}
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (bv_size <= 64 && is_num1 && is_num2) {
uint64_t n1 = r1.get_uint64();
uint64_t n2_orig = r2.get_uint64();
uint64_t n2 = n2_orig % bv_size;
SASSERT(n2 < bv_size);
uint64_t r = shift_right(n1, n2);
bool sign = (n1 & shift_left(1ull, bv_size - 1ull)) != 0;
if (n2_orig > n2) {
if (sign) {
r = shift_left(1ull, bv_size) - 1ull;
}
else {
r = 0;
}
}
else if (sign) {
uint64_t allone = shift_left(1ull, bv_size) - 1ull;
uint64_t mask = ~(shift_left(1ull, bv_size - n2) - 1ull);
mask &= allone;
r |= mask;
}
result = mk_numeral(numeral(r, numeral::ui64()), bv_size);
return BR_DONE;
}
if (is_num1 && is_num2 && numeral(bv_size) <= r2) {
if (m_util.has_sign_bit(r1, bv_size))
result = mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size);
else
result = mk_zero(bv_size);
return BR_DONE;
}
if (is_num1 && is_num2) {
SASSERT(r2 < numeral(bv_size));
bool sign = m_util.has_sign_bit(r1, bv_size);
div(r1, rational::power_of_two(r2.get_unsigned()), r1);
if (sign) {
// pad ones.
numeral p(1);
for (unsigned i = 0; i < bv_size; ++i) {
if (r1 < p) {
r1 += p;
}
p *= numeral(2);
}
}
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
// (bvashr (bvashr x r1) r2) --> (bvashr x r1+r2)
if (is_num2 && m_util.is_bv_ashr(arg1) && is_numeral(to_app(arg1)->get_arg(1), r1, bv_size)) {
r1 += r2;
if (r1 > numeral(bv_size))
r1 = numeral(bv_size);
result = m.mk_app(get_fid(), OP_BASHR,
to_app(arg1)->get_arg(0),
mk_numeral(r1, bv_size));
return BR_REWRITE1; // not really needed at this time.
}
#if 0
// (bvashr x k) --> (concat extract[sz-1:sz-1](x) ... extract[sz-1:sz-1](x) extract[sz-1:k](x))
if (is_num2) {
ptr_buffer new_args;
if (r2 > numeral(bv_size))
r2 = numeral(bv_size);
SASSERT(r2 <= numeral(bv_size));
unsigned k = r2.get_unsigned();
expr * sign = m_mk_extract(bv_size-1, bv_size-1, arg1);
for (unsigned i = 0; i < k; i++)
new_args.push_back(sign);
if (k != bv_size)
new_args.push_back(m_mk_extract(bv_size-1, k, arg1));
result = m_util.mk_concat(new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
#endif
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_sdiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0) {
result = m_util.mk_bv_sdiv0(arg1);
return BR_REWRITE1;
}
else {
// The "hardware interpretation" for (bvsdiv x 0) is (ite (bvslt x #x0000) #x0001 #xffff)
result = m.mk_ite(m.mk_app(get_fid(), OP_SLT, arg1, mk_zero(bv_size)),
mk_one(bv_size),
mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size));
return BR_REWRITE2;
}
}
if (r2.is_one()) {
result = arg1;
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size, true);
result = mk_numeral(machine_div(r1, r2), bv_size);
return BR_DONE;
}
result = m_util.mk_bv_sdiv_i(arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m_util.mk_bv_sdiv_i(arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m.mk_ite(m.mk_eq(arg2, mk_zero(bv_size)),
m_util.mk_bv_sdiv0(arg1),
m_util.mk_bv_sdiv_i(arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_udiv_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
TRACE("bv_udiv", tout << "hi_div0: " << hi_div0 << "\n";);
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size);
if (r2.is_zero()) {
if (!hi_div0) {
result = m_util.mk_bv_udiv0(arg1);
return BR_REWRITE1;
}
else {
// The "hardware interpretation" for (bvudiv x 0) is #xffff
result = mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size);
return BR_DONE;
}
}
if (r2.is_one()) {
result = arg1;
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size);
result = mk_numeral(machine_div(r1, r2), bv_size);
return BR_DONE;
}
unsigned shift;
if (r2.is_power_of_two(shift)) {
result = m.mk_app(get_fid(), OP_BLSHR, arg1, mk_numeral(shift, bv_size));
return BR_REWRITE1;
}
result = m_util.mk_bv_udiv_i(arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m_util.mk_bv_udiv_i(arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m.mk_ite(m.mk_eq(arg2, mk_zero(bv_size)),
m_util.mk_bv_udiv0(arg1),
m_util.mk_bv_udiv_i(arg1, arg2));
TRACE("bv_udiv", tout << mk_pp(arg1, m) << "\n" << mk_pp(arg2, m) << "\n---->\n" << mk_pp(result, m) << "\n";);
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_srem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0) {
result = m.mk_app(get_fid(), OP_BSREM0, arg1);
return BR_REWRITE1;
}
else {
// The "hardware interpretation" for (bvsrem x 0) is x
result = arg1;
return BR_DONE;
}
}
if (r2.is_one()) {
result = mk_zero(bv_size);
return BR_DONE;
}
if (!r2.is_zero() && is_numeral(arg1, r1, bv_size)) {
r1 = m_util.norm(r1, bv_size, true);
result = mk_numeral(r1 % r2, bv_size);
return BR_DONE;
}
result = m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m.mk_ite(m.mk_eq(arg2, mk_zero(bv_size)),
m.mk_app(get_fid(), OP_BSREM0, arg1),
m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2));
return BR_REWRITE2;
}
bool bv_rewriter::is_minus_one_core(expr * arg) const {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
return r == (rational::power_of_two(bv_size) - numeral(1));
}
return false;
}
bool bv_rewriter::is_negatable(expr * arg, expr_ref& x) {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
r = bitwise_not(bv_size, r);
x = mk_numeral(r, bv_size);
return true;
}
if (m_util.is_bv_not(arg)) {
SASSERT(to_app(arg)->get_num_args() == 1);
x = to_app(arg)->get_arg(0);
return true;
}
return false;
}
bool bv_rewriter::is_x_minus_one(expr * arg, expr * & x) {
if (is_add(arg) && to_app(arg)->get_num_args() == 2) {
if (is_minus_one_core(to_app(arg)->get_arg(0))) {
x = to_app(arg)->get_arg(1);
return true;
}
if (is_minus_one_core(to_app(arg)->get_arg(1))) {
x = to_app(arg)->get_arg(0);
return true;
}
}
return false;
}
br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size);
if (r2.is_zero()) {
if (!hi_div0) {
result = m_util.mk_bv_urem0(arg1);
return BR_REWRITE1;
}
else {
// The "hardware interpretation" for (bvurem x 0) is x
result = arg1;
return BR_DONE;
}
}
if (r2.is_one()) {
result = mk_zero(bv_size);
return BR_DONE;
}
if (!r2.is_zero() && is_num1) {
r1 = m_util.norm(r1, bv_size);
r1 %= r2;
result = mk_numeral(r1, bv_size);
return BR_DONE;
}
unsigned shift;
if (r2.is_power_of_two(shift)) {
expr * args[2] = {
mk_zero(bv_size - shift),
m_mk_extract(shift-1, 0, arg1)
};
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
result = m_util.mk_bv_urem_i(arg1, arg2);
return BR_DONE;
}
if (!hi_div0) {
// urem(0, x) ==> ite(x = 0, urem0(x), 0)
if (is_num1 && r1.is_zero()) {
expr * zero = arg1;
result = m.mk_ite(m.mk_eq(arg2, zero),
m_util.mk_bv_urem0(zero),
zero);
return BR_REWRITE2;
}
// urem(x - 1, x) ==> ite(x = 0, urem0(x-1), x - 1) ==> ite(x = 0, urem0(-1), x - 1)
expr * x;
if (is_x_minus_one(arg1, x) && x == arg2) {
bv_size = get_bv_size(arg1);
expr * x_minus_1 = arg1;
expr * minus_one = mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size);
result = m.mk_ite(m.mk_eq(x, mk_zero(bv_size)),
m_util.mk_bv_urem0(minus_one),
x_minus_1);
return BR_REWRITE2;
}
}
else {
// Remark: when HI_DIV0=true is used, (bvurem x 0) --> x
if (is_num1 && r1.is_zero()) {
// urem(0, x) --> 0
expr * zero = arg1;
result = zero;
return BR_DONE;
}
// urem(x - 1, x) --> x - 1
expr * x;
if (is_x_minus_one(arg1, x) && x == arg2) {
expr * x_minus_1 = arg1;
result = x_minus_1;
return BR_DONE;
}
}
if (hi_div0) {
result = m_util.mk_bv_urem_i(arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m.mk_ite(m.mk_eq(arg2, mk_zero(bv_size)),
m_util.mk_bv_urem0(arg1),
m_util.mk_bv_urem_i(arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_smod_core(expr * arg1, expr * arg2, bool hi_div0, expr_ref & result) {
numeral r1, r2;
unsigned bv_size;
bool is_num1 = is_numeral(arg1, r1, bv_size);
if (is_num1) {
r1 = m_util.norm(r1, bv_size, true);
if (r1.is_zero()) {
result = m_util.mk_bv_urem(arg1, arg2);
return BR_REWRITE1;
}
}
if (is_numeral(arg2, r2, bv_size)) {
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0)
result = m_util.mk_bv_smod0(arg1);
else
result = arg1;
return BR_DONE;
}
if (is_num1) {
numeral abs_r1 = m_util.norm(abs(r1), bv_size);
numeral abs_r2 = m_util.norm(abs(r2), bv_size);
numeral u = m_util.norm(abs_r1 % abs_r2, bv_size);
numeral r;
if (u.is_zero())
r = u;
else if (r1.is_pos() && r2.is_pos())
r = u;
else if (r1.is_neg() && r2.is_pos())
r = m_util.norm(-u + r2, bv_size);
else if (r1.is_pos() && r2.is_neg())
r = m_util.norm(u + r2, bv_size);
else
r = m_util.norm(-u, bv_size);
result = mk_numeral(r, bv_size);
return BR_DONE;
}
if (r2.is_one()) {
// (bvsmod x 1) --> 0
result = mk_zero(bv_size);
return BR_REWRITE2;
}
#if 0
expr* a = nullptr, *b = nullptr;
if (r2.is_pos() &&
r2.get_num_bits() + 1 < bv_size &&
m_util.is_bv_mul(arg1, a, b) &&
!m_util.is_concat(a) &&
!m_util.is_concat(b)) {
unsigned nb = r2.get_num_bits();
expr_ref a1(m_util.mk_bv_smod(a, arg2), m);
expr_ref a2(m_util.mk_bv_smod(b, arg2), m);
a1 = m_util.mk_concat( mk_zero(bv_size - nb), m_mk_extract(nb-1,0,a1));
a2 = m_util.mk_concat( mk_zero(bv_size - nb), m_mk_extract(nb-1,0,a2));
result = m_util.mk_bv_mul(a1, a2);
std::cout << result << "\n";
result = m_util.mk_bv_smod(result, arg2);
return BR_REWRITE_FULL;
}
#endif
}
if (hi_div0) {
result = m.mk_app(get_fid(), OP_BSMOD_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m.mk_ite(m.mk_eq(arg2, mk_zero(bv_size)),
m.mk_app(get_fid(), OP_BSMOD0, arg1),
m.mk_app(get_fid(), OP_BSMOD_I, arg1, arg2));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_int2bv(unsigned bv_size, expr * arg, expr_ref & result) {
numeral val;
bool is_int;
if (m_autil.is_numeral(arg, val, is_int)) {
val = m_util.norm(val, bv_size);
result = mk_numeral(val, bv_size);
return BR_DONE;
}
// (int2bv (bv2int x)) --> x
if (m_util.is_bv2int(arg) && bv_size == get_bv_size(to_app(arg)->get_arg(0))) {
result = to_app(arg)->get_arg(0);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
numeral v;
unsigned sz;
if (is_numeral(arg, v, sz)) {
result = m_autil.mk_numeral(v, true);
return BR_DONE;
}
if (m_util.is_concat(arg)) {
if (to_app(arg)->get_num_args() == 0) {
result = m_autil.mk_int(0);
return BR_DONE;
}
expr_ref_vector args(m);
unsigned num_args = to_app(arg)->get_num_args();
for (expr* x : *to_app(arg)) {
args.push_back(m_util.mk_bv2int(x));
}
unsigned sz = get_bv_size(to_app(arg)->get_arg(num_args-1));
for (unsigned i = num_args - 1; i > 0; ) {
expr_ref tmp(m);
--i;
tmp = args[i].get();
tmp = m_autil.mk_mul(m_autil.mk_numeral(power(numeral(2), sz), true), tmp);
args[i] = std::move(tmp);
sz += get_bv_size(to_app(arg)->get_arg(i));
}
result = m_autil.mk_add(args.size(), args.data());
return BR_REWRITE2;
}
if (is_mul_no_overflow(arg)) {
expr_ref_vector args(m);
for (expr* x : *to_app(arg)) args.push_back(m_util.mk_bv2int(x));
result = m_autil.mk_mul(args.size(), args.data());
return BR_REWRITE2;
}
if (is_add_no_overflow(arg)) {
expr_ref_vector args(m);
for (expr* x : *to_app(arg)) args.push_back(m_util.mk_bv2int(x));
result = m_autil.mk_add(args.size(), args.data());
return BR_REWRITE2;
}
return BR_FAILED;
}
bool bv_rewriter::is_mul_no_overflow(expr* e) {
if (!m_util.is_bv_mul(e))
return false;
unsigned sz = get_bv_size(e);
unsigned sum = 0;
for (expr* x : *to_app(e))
sum += sz - num_leading_zero_bits(x);
if (sum > sz + 1)
return false;
if (sum <= sz)
return true;
rational v;
unsigned shift;
for (expr* x : *to_app(e))
if (m_util.is_numeral(x, v) && v.is_power_of_two(shift))
return true;
return false;
}
bool bv_rewriter::is_add_no_overflow(expr* e) {
if (!is_add(e))
return false;
unsigned num_args = to_app(e)->get_num_args();
if (num_args <= 1)
return true;
num_args -= 2;
for (expr* x : *to_app(e))
if (num_args >= num_leading_zero_bits(x))
return false;
return true;
}
unsigned bv_rewriter::num_leading_zero_bits(expr* e) {
numeral v;
unsigned sz = get_bv_size(e);
if (m_util.is_numeral(e, v)) {
while (v.is_pos()) {
SASSERT(sz > 0);
--sz;
v = div(v, numeral(2));
}
return sz;
}
else if (m_util.is_concat(e)) {
app* a = to_app(e);
unsigned sz1 = get_bv_size(a->get_arg(0));
unsigned nb1 = num_leading_zero_bits(a->get_arg(0));
if (sz1 == nb1) {
nb1 += num_leading_zero_bits(a->get_arg(1));
}
return nb1;
}
return 0;
}
br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_ref & result) {
expr_ref_buffer new_args(m);
numeral v1;
numeral v2;
unsigned sz1, sz2;
bool fused_numeral = false;
bool expanded = false;
bool fused_extract = false;
bool eq_args = true;
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
expr * prev = nullptr;
if (i > 0) {
prev = new_args.back();
eq_args &= prev == arg;
}
if (is_numeral(arg, v1, sz1) && prev != nullptr && is_numeral(prev, v2, sz2)) {
v2 *= rational::power_of_two(sz1);
v2 += v1;
new_args.pop_back();
new_args.push_back(mk_numeral(v2, sz1+sz2));
fused_numeral = true;
}
else if (m_flat && m_util.is_concat(arg)) {
for (expr* arg2 : *to_app(arg))
new_args.push_back(arg2);
expanded = true;
}
else if (m_util.is_extract(arg) &&
prev != nullptr &&
m_util.is_extract(prev) &&
to_app(arg)->get_arg(0) == to_app(prev)->get_arg(0) &&
m_util.get_extract_low(prev) == m_util.get_extract_high(arg) + 1) {
// (concat (extract[h1,l1] a) (extract[h2,l2] a)) --> (extract[h1,l2] a) if l1 == h2+1
expr * new_arg = m_mk_extract(m_util.get_extract_high(prev),
m_util.get_extract_low(arg),
to_app(arg)->get_arg(0));
new_args.pop_back();
new_args.push_back(new_arg);
fused_extract = true;
}
else {
new_args.push_back(arg);
}
}
if (!fused_numeral && !expanded && !fused_extract) {
expr* x, *y, *z;
if (eq_args) {
if (m.is_ite(new_args.back(), x, y, z)) {
ptr_buffer args1, args2;
for (unsigned i = 0; i < new_args.size(); ++i)
args1.push_back(y), args2.push_back(z);
result = m.mk_ite(x, m_util.mk_concat(args1), m_util.mk_concat(args2));
return BR_REWRITE2;
}
}
return BR_FAILED;
}
SASSERT(!new_args.empty());
if (new_args.size() == 1) {
result = new_args.back();
return fused_extract ? BR_REWRITE1 : BR_DONE;
}
result = m_util.mk_concat(new_args);
if (fused_extract)
return BR_REWRITE2;
else if (expanded)
return BR_REWRITE1;
else
return BR_DONE;
}
br_status bv_rewriter::mk_zero_extend(unsigned n, expr * arg, expr_ref & result) {
if (n == 0) {
result = arg;
return BR_DONE;
}
else {
expr * args[2] = { mk_zero(n), arg };
result = m_util.mk_concat(2, args);
return BR_REWRITE1;
}
}
br_status bv_rewriter::mk_sign_extend(unsigned n, expr * arg, expr_ref & result) {
if (n == 0) {
result = arg;
return BR_DONE;
}
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
unsigned result_bv_size = bv_size + n;
r = m_util.norm(r, bv_size, true);
mod(r, rational::power_of_two(result_bv_size), r);
result = mk_numeral(r, result_bv_size);
return BR_DONE;
}
if (m_elim_sign_ext) {
unsigned sz = get_bv_size(arg);
expr * sign = m_mk_extract(sz-1, sz-1, arg);
ptr_buffer args;
for (unsigned i = 0; i < n; i++)
args.push_back(sign);
args.push_back(arg);
result = m_util.mk_concat(args.size(), args.data());
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_repeat(unsigned n, expr * arg, expr_ref & result) {
if (n == 1) {
result = arg;
return BR_DONE;
}
ptr_buffer args;
for (unsigned i = 0; i < n; i++)
args.push_back(arg);
result = m_util.mk_concat(args.size(), args.data());
return BR_REWRITE1;
}
br_status bv_rewriter::mk_bv_or(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num > 0);
if (num == 1) {
result = args[0];
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
bool flattened = false;
ptr_buffer flat_args;
if (m_flat) {
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (m_util.is_bv_or(arg)) {
unsigned num2 = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num2; j++)
flat_args.push_back(to_app(arg)->get_arg(j));
}
else {
flat_args.push_back(arg);
}
}
if (flat_args.size() != num) {
flattened = true;
num = flat_args.size();
args = flat_args.data();
}
}
ptr_buffer new_args;
expr_fast_mark1 pos_args;
expr_fast_mark2 neg_args;
bool merged = false;
unsigned num_coeffs = 0;
numeral v1, v2;
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg, v2, sz)) {
num_coeffs++;
v1 = bitwise_or(v1, v2);
continue;
}
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (pos_args.is_marked(atom)) {
result = mk_numeral(rational::power_of_two(sz) - numeral(1), sz);
return BR_DONE;
}
else if (neg_args.is_marked(atom)) {
merged = true;
continue;
}
neg_args.mark(atom, true);
new_args.push_back(arg);
}
else {
if (pos_args.is_marked(arg)) {
merged = true;
continue;
}
else if (neg_args.is_marked(arg)) {
result = mk_numeral(rational::power_of_two(sz) - numeral(1), sz);
return BR_DONE;
}
pos_args.mark(arg, true);
new_args.push_back(arg);
}
}
if (v1 == rational::power_of_two(sz) - numeral(1)) {
result = mk_numeral(v1, sz);
return BR_DONE;
}
// Simplifications of the form:
// (bvor (concat x #x00) (concat #x00 y)) --> (concat x y)
if (new_args.size() == 2 &&
num_coeffs == 0 &&
m_util.is_concat(new_args[0]) &&
m_util.is_concat(new_args[1])) {
app * concat1 = to_app(new_args[0]);
app * concat2 = to_app(new_args[1]);
unsigned i = 0;
for (i = 0; i < sz; i++)
if (!is_zero_bit(concat1, i) && !is_zero_bit(concat2, i))
break;
if (i == sz) {
// is target
ptr_buffer non_zero_args;
int j = sz;
j--;
while (j >= 0) {
int high = j;
while (j >= 0 && is_zero_bit(concat1, j))
--j;
if (j != high)
non_zero_args.push_back(m_mk_extract(high, j+1, concat2));
high = j;
while (j >= 0 && is_zero_bit(concat2, j))
--j;
if (j != high)
non_zero_args.push_back(m_mk_extract(high, j+1, concat1));
}
result = m_util.mk_concat(non_zero_args.size(), non_zero_args.data());
return BR_REWRITE2;
}
}
if (!v1.is_zero() && new_args.size() == 1) {
v1 = m_util.norm(v1, sz);
#ifdef _TRACE
numeral old_v1 = v1;
#endif
// OR is a mask
expr * t = new_args[0];
numeral two(2);
ptr_buffer exs;
unsigned low = 0;
unsigned i = 0;
while (i < sz) {
while (i < sz && v1.is_odd()) {
i++;
div(v1, two, v1);
}
if (i != low) {
unsigned num_sz = i - low;
exs.push_back(m_util.mk_numeral(rational::power_of_two(num_sz) - numeral(1), num_sz));
low = i;
}
while (i < sz && v1.is_even()) {
i++;
div(v1, two, v1);
}
if (i != low) {
exs.push_back(m_mk_extract(i-1, low, t));
low = i;
}
}
std::reverse(exs.begin(), exs.end());
result = m_util.mk_concat(exs.size(), exs.data());
TRACE("mask_bug",
tout << "(assert (distinct (bvor (_ bv" << old_v1 << " " << sz << ")\n" << mk_pp(t, m) << ")\n";
tout << mk_pp(result, m) << "))\n";);
return BR_REWRITE2;
}
if (!flattened && !merged && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero())) && (!m_bv_sort_ac || is_sorted(num, args))) {
return BR_FAILED;
}
if (!v1.is_zero()) {
new_args.push_back(mk_numeral(v1, sz));
}
switch (new_args.size()) {
case 0:
result = mk_zero(sz);
return BR_DONE;
case 1:
result = new_args[0];
return BR_DONE;
default:
if (m_bv_sort_ac)
std::sort(new_args.begin(), new_args.end(), ast_to_lt());
if (distribute_concat(OP_BOR, new_args.size(), new_args.data(), result)) {
return BR_REWRITE3;
}
result = m_util.mk_bv_or(new_args.size(), new_args.data());
return BR_DONE;
}
}
br_status bv_rewriter::mk_bv_xor(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num > 0);
if (num == 1) {
result = args[0];
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
bool flattened = false;
ptr_buffer flat_args;
if (m_flat) {
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (m_util.is_bv_xor(arg)) {
unsigned num2 = to_app(arg)->get_num_args();
for (unsigned j = 0; j < num2; j++)
flat_args.push_back(to_app(arg)->get_arg(j));
}
else {
flat_args.push_back(arg);
}
}
if (flat_args.size() != num) {
flattened = true;
num = flat_args.size();
args = flat_args.data();
}
}
expr_fast_mark1 pos_args;
expr_fast_mark2 neg_args;
bool merged = false;
numeral v1, v2;
unsigned num_coeffs = 0;
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg, v2, sz)) {
v1 = bitwise_xor(v1, v2);
num_coeffs++;
continue;
}
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (neg_args.is_marked(atom)) {
neg_args.mark(atom, false);
merged = true;
}
else if (pos_args.is_marked(atom)) {
pos_args.mark(atom, false);
merged = true;
v1 = bitwise_xor(v1, rational::power_of_two(sz) - numeral(1));
}
else {
neg_args.mark(atom, true);
}
}
else {
if (pos_args.is_marked(arg)) {
pos_args.mark(arg, false);
merged = true;
}
else if (neg_args.is_marked(arg)) {
neg_args.mark(arg, false);
merged = true;
v1 = bitwise_xor(v1, rational::power_of_two(sz) - numeral(1));
}
else {
pos_args.mark(arg, true);
}
}
}
// XOR is a mask
// All arguments but one is a numeral.
//
// Apply a transformation of the form:
//
// (bvxor a 0011) --> (concat ((_ extract 3 2) a) ((_ extract 1 0) (bvnot a)))
//
if (!v1.is_zero() && num_coeffs == num - 1) {
// find argument that is not a numeral
expr * t = nullptr;
for (unsigned i = 0; i < num; i++) {
t = args[i];
if (!is_numeral(t))
break;
}
SASSERT(t != 0);
numeral two(2);
expr_ref_buffer exs(m);
expr_ref not_t(m);
not_t = m_util.mk_bv_not(t);
unsigned low = 0;
unsigned i = 0;
while (i < sz) {
while (i < sz && mod(v1, two).is_one()) {
i++;
div(v1, two, v1);
}
if (i != low) {
exs.push_back(m_mk_extract(i-1, low, not_t));
low = i;
}
while (i < sz && mod(v1, two).is_zero()) {
i++;
div(v1, two, v1);
}
if (i != low) {
exs.push_back(m_mk_extract(i-1, low, t));
low = i;
}
}
std::reverse(exs.data(), exs.data() + exs.size());
if (exs.size() == 1)
result = exs[0];
else
result = m_util.mk_concat(exs.size(), exs.data());
return BR_REWRITE3;
}
if (!merged && !flattened && (num_coeffs == 0 || (num_coeffs == 1 && !v1.is_zero() && v1 != (rational::power_of_two(sz) - numeral(1)))) &&
(!m_bv_sort_ac || is_sorted(num, args))) {
if (distribute_concat(OP_BXOR, num, args, result)) {
return BR_REWRITE3;
}
return BR_FAILED;
}
ptr_buffer new_args;
expr_ref c(m); // may not be used
if (!v1.is_zero()) {
c = mk_numeral(v1, sz);
new_args.push_back(c);
}
for (unsigned i = 0; i < num; i++) {
expr * arg = args[i];
if (is_numeral(arg))
continue;
if (m_util.is_bv_not(arg)) {
expr * atom = to_app(arg)->get_arg(0);
if (neg_args.is_marked(atom)) {
new_args.push_back(arg);
neg_args.mark(atom, false);
}
}
else if (pos_args.is_marked(arg)) {
new_args.push_back(arg);
pos_args.mark(arg, false);
}
}
switch (new_args.size()) {
case 0:
result = mk_zero(sz);
return BR_DONE;
case 1:
result = new_args[0];
return BR_DONE;
case 2:
if (m_util.is_allone(new_args[0])) {
result = m_util.mk_bv_not(new_args[1]);
return BR_DONE;
}
Z3_fallthrough;
default:
if (m_bv_sort_ac)
std::sort(new_args.begin(), new_args.end(), ast_to_lt());
if (distribute_concat(OP_BXOR, new_args.size(), new_args.data(), result)) {
return BR_REWRITE3;
}
result = m_util.mk_bv_xor(new_args.size(), new_args.data());
return BR_DONE;
}
}
bool bv_rewriter::distribute_concat(decl_kind k, unsigned n, expr* const* args, expr_ref& result) {
for (unsigned i = 0; i < n; ++i) {
expr* arg = args[i];
if (m_util.is_concat(arg)) {
expr* e = to_app(arg)->get_arg(0);
unsigned sz1 = get_bv_size(e);
unsigned sz2 = get_bv_size(arg);
if (sz1 == sz2) {
result = m.mk_app(get_fid(), k, n, args);
return true;
}
expr_ref_vector args1(m), args2(m);
for (unsigned j = 0; j < n; ++j) {
args1.push_back(m_mk_extract(sz2 - 1, sz2 - sz1, args[j]));
args2.push_back(m_mk_extract(sz2 - sz1 - 1, 0, args[j]));
}
expr* arg1 = m.mk_app(get_fid(), k, args1.size(), args1.data());
expr* arg2 = m.mk_app(get_fid(), k, args2.size(), args2.data());
result = m_util.mk_concat(arg1, arg2);
return true;
}
}
return false;
}
br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) {
if (m_util.is_bv_not(arg)) {
result = to_app(arg)->get_arg(0);
return BR_DONE;
}
numeral val;
unsigned bv_size;
if (is_numeral(arg, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = mk_numeral(val, bv_size);
return BR_DONE;
}
if (m_util.is_concat(arg)) {
ptr_buffer new_args;
for (expr* a : *to_app(arg)) {
new_args.push_back(m_util.mk_bv_not(a));
}
result = m_util.mk_concat(new_args.size(), new_args.data());
return BR_REWRITE2;
}
expr* x, *y, *z;
if (m.is_ite(arg, x, y, z) && m_util.is_numeral(y, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = m.mk_ite(x, m_util.mk_numeral(val, bv_size), m_util.mk_bv_not(z));
return BR_REWRITE2;
}
if (m.is_ite(arg, x, y, z) && m_util.is_numeral(z, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = m.mk_ite(x, m_util.mk_bv_not(y), m_util.mk_numeral(val, bv_size));
return BR_REWRITE2;
}
if (m_bvnot_simpl) {
expr *s(nullptr), *t(nullptr);
if (m_util.is_bv_mul(arg, s, t)) {
// ~(-1 * x) --> (x - 1)
bv_size = m_util.get_bv_size(s);
if (m_util.is_allone(s) || m_util.is_allone(t)) {
result = m_util.mk_bv_add(s, t);
return BR_REWRITE1;
}
}
if (m_util.is_bv_add(arg, s, t)) {
expr_ref ns(m);
expr_ref nt(m);
// ~(x + y) --> (~x + ~y + 1) when x and y are easy to negate
if (is_negatable(t, nt) && is_negatable(s, ns)) {
bv_size = m_util.get_bv_size(s);
expr * nargs[3] = { mk_one(bv_size), ns.get(), nt.get() };
result = m.mk_app(m_util.get_fid(), OP_BADD, 3, nargs);
return BR_REWRITE1;
}
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_and(unsigned num, expr * const * args, expr_ref & result) {
ptr_buffer new_args;
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m_util.mk_bv_not(args[i]));
}
SASSERT(num == new_args.size());
result = m_util.mk_bv_not(m_util.mk_bv_or(new_args.size(), new_args.data()));
return BR_REWRITE3;
}
br_status bv_rewriter::mk_bv_nand(unsigned num, expr * const * args, expr_ref & result) {
ptr_buffer new_args;
for (unsigned i = 0; i < num; i++) {
new_args.push_back(m_util.mk_bv_not(args[i]));
}
result = m_util.mk_bv_or(new_args.size(), new_args.data());
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_nor(unsigned num_args, expr * const * args, expr_ref & result) {
result = m_util.mk_bv_not(m_util.mk_bv_or(num_args, args));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_xnor(unsigned num_args, expr * const * args, expr_ref & result) {
switch (num_args) {
case 0: result = m.mk_true(); break;
case 1: result = m_util.mk_bv_not(args[0]); break;
case 2: result = m_util.mk_bv_not(m_util.mk_bv_xor(num_args, args)); break;
default:
mk_bv_xnor(2, args, result);
for (unsigned i = 2; i < num_args; ++i) {
expr* _args[2] = { result, args[i] };
mk_bv_xnor(2, _args, result);
}
return BR_REWRITE_FULL;
}
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_rotate_left(unsigned n, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
n = n % sz;
if (n == 0 || sz == 1) {
result = arg;
return BR_DONE;
}
expr * args[2] = { m_mk_extract(sz - n - 1, 0, arg), m_mk_extract(sz - 1, sz - n, arg) };
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_rotate_right(unsigned n, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
n = n % sz;
return mk_bv_rotate_left(sz - n, arg, result);
}
br_status bv_rewriter::mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref & result) {
numeral r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
unsigned shift = static_cast((r2 % numeral(bv_size)).get_uint64() % static_cast(bv_size));
return mk_bv_rotate_left(shift, arg1, result);
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref & result) {
numeral r2;
unsigned bv_size;
if (is_numeral(arg2, r2, bv_size)) {
unsigned shift = static_cast((r2 % numeral(bv_size)).get_uint64() % static_cast(bv_size));
return mk_bv_rotate_right(shift, arg1, result);
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_redor(expr * arg, expr_ref & result) {
if (is_numeral(arg)) {
result = m_util.is_zero(arg) ? mk_zero(1) : mk_one(1);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_redand(expr * arg, expr_ref & result) {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
result = (r == rational::power_of_two(bv_size) - numeral(1)) ? mk_one(1) : mk_zero(1);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_comp(expr * arg1, expr * arg2, expr_ref & result) {
if (arg1 == arg2) {
result = mk_one(1);
return BR_DONE;
}
if (is_numeral(arg1) && is_numeral(arg2)) {
SASSERT(arg1 != arg2);
result = mk_zero(1);
return BR_DONE;
}
result = m.mk_ite(m.mk_eq(arg1, arg2),
mk_one(1),
mk_zero(1));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bv_add(unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = mk_add_core(num_args, args, result);
if (st != BR_FAILED && st != BR_DONE) {
TRACE("bv", tout << result << "\n";);
return st;
}
#if 0
expr * x;
expr * y;
if (st == BR_FAILED && num_args == 2) {
x = args[0]; y = args[1];
}
else if (st == BR_DONE && is_add(result) && to_app(result)->get_num_args() == 2) {
x = to_app(result)->get_arg(0);
y = to_app(result)->get_arg(1);
}
else {
return st;
}
if (!m_util.is_concat(x) && !is_numeral(x))
return st;
if (!m_util.is_concat(y) && !is_numeral(y))
return st;
unsigned sz = get_bv_size(x);
for (unsigned i = 0; i < sz; i++) {
if (!is_zero_bit(x,i) && !is_zero_bit(y,i))
return st;
}
result = m.mk_app(get_fid(), OP_BOR, x, y);
return BR_REWRITE1;
#else
unsigned _num_args;
expr * const * _args;
if (st == BR_FAILED) {
_num_args = num_args;
_args = args;
}
else if (st == BR_DONE && is_add(result)) {
_num_args = to_app(result)->get_num_args();
_args = to_app(result)->get_args();
}
else {
return st;
}
if (_num_args < 2)
return st;
unsigned sz = get_bv_size(_args[0]);
for (unsigned i = 0; i < sz; i++) {
bool found_non_zero = false;
for (unsigned j = 0; j < _num_args; j++) {
if (!is_zero_bit(_args[j], i)) {
// at most one of the arguments may have a non-zero bit.
if (found_non_zero)
return st;
found_non_zero = true;
}
}
}
result = m.mk_app(get_fid(), OP_BOR, _num_args, _args);
return BR_REWRITE1;
#endif
}
bool bv_rewriter::is_zero_bit(expr * x, unsigned idx) {
numeral val;
unsigned bv_size;
loop:
if (is_numeral(x, val, bv_size))
return val.is_zero() || !val.get_bit(idx);
if (m_util.is_concat(x)) {
unsigned i = to_app(x)->get_num_args();
while (i > 0) {
--i;
expr * y = to_app(x)->get_arg(i);
bv_size = get_bv_size(y);
if (bv_size <= idx)
idx -= bv_size;
else {
x = y;
goto loop;
}
}
UNREACHABLE();
}
return false;
}
br_status bv_rewriter::mk_mul_hoist(unsigned num_args, expr * const * args, expr_ref & result) {
if (num_args <= 1)
return BR_FAILED;
expr* z = nullptr, *u = nullptr;
for (unsigned i = 0; i < num_args; ++i) {
// ~x = -1 - x
if (false && m_util.is_bv_not(args[i], z)) {
unsigned sz = m_util.get_bv_size(z);
ptr_vector new_args(num_args, args);
rational p = rational(2).expt(sz) - 1;
new_args[i] = mk_numeral(p, sz);
expr_ref a(m_util.mk_bv_mul(num_args, new_args.data()), m);
new_args[i] = z;
expr_ref b(m_util.mk_bv_mul(num_args, new_args.data()), m);
result = m_util.mk_bv_sub(a, b);
return BR_REWRITE3;
}
// shl(z, u) * x = shl(x * z, u)
if (m_util.is_bv_shl(args[i], z, u)) {
ptr_vector new_args(num_args, args);
new_args[i] = z;
result = m_util.mk_bv_mul(num_args, new_args.data());
result = m_util.mk_bv_shl(result, u);
return BR_REWRITE2;
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bv_mul(unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = mk_mul_core(num_args, args, result);
if (st != BR_FAILED && st != BR_DONE)
return st;
if (st == BR_DONE && is_mul(result)) {
st = mk_mul_hoist(to_app(result)->get_num_args(), to_app(result)->get_args(), result);
if (st != BR_FAILED)
return st;
st = BR_DONE;
}
if (st == BR_FAILED) {
st = mk_mul_hoist(num_args, args, result);
if (st != BR_FAILED)
return st;
}
expr* x, * y;
if (st == BR_FAILED && num_args == 2) {
x = args[0];
y = args[1];
}
else if (st == BR_DONE && is_mul(result) && to_app(result)->get_num_args() == 2) {
x = to_app(result)->get_arg(0);
y = to_app(result)->get_arg(1);
}
else {
return st;
}
if (m_mul2concat) {
numeral v;
unsigned bv_size;
unsigned shift;
if (is_numeral(x, v, bv_size) && v.is_power_of_two(shift)) {
SASSERT(shift >= 1);
expr * args[2] = {
m_mk_extract(bv_size-shift-1, 0, y),
mk_zero(shift)
};
result = m_util.mk_concat(2, args);
return BR_REWRITE2;
}
}
return st;
}
br_status bv_rewriter::mk_bit2bool(expr * n, int idx, expr_ref & result) {
rational v, bit;
unsigned sz = 0;
if (m_util.is_mkbv(n)) {
result = to_app(n)->get_arg(idx);
return BR_DONE;
}
if (!is_numeral(n, v, sz))
return BR_FAILED;
if (idx < 0 || idx >= static_cast(sz))
return BR_FAILED;
div(v, rational::power_of_two(idx), bit);
mod(bit, rational(2), bit);
result = m.mk_bool_val(bit.is_one());
return BR_DONE;
}
br_status bv_rewriter::mk_bit2bool(expr * lhs, expr * rhs, expr_ref & result) {
unsigned sz = get_bv_size(lhs);
if (sz != 1)
return BR_FAILED;
if (is_numeral(lhs))
std::swap(lhs, rhs);
numeral v;
if (!is_numeral(rhs, v, sz))
return BR_FAILED;
if (is_numeral(lhs)) {
SASSERT(is_numeral(rhs));
result = m.mk_bool_val(lhs == rhs);
return BR_DONE;
}
expr* a = nullptr, *b = nullptr, *c = nullptr;
if (m.is_ite(lhs, a, b, c)) {
bool_rewriter rw(m);
expr_ref e1(rw.mk_eq(b, rhs), m);
expr_ref e2(rw.mk_eq(c, rhs), m);
result = rw.mk_ite(a, e1, e2);
return BR_REWRITE2;
}
if (m_util.is_bv_not(lhs, a)) {
SASSERT(v.is_one() || v.is_zero());
result = m.mk_eq(a, mk_numeral(numeral(1) - v, 1));
return BR_REWRITE1;
}
bool is_one = v.is_one();
if (m_util.is_bv_or(lhs)) {
if (!m_bit1)
m_bit1 = is_one ? rhs : mk_one(1);
ptr_buffer new_args;
for (expr* arg : *to_app(lhs))
new_args.push_back(m.mk_eq(arg, m_bit1));
result = m.mk_or(new_args);
if (is_one) {
return BR_REWRITE2;
}
else {
result = m.mk_not(result);
return BR_REWRITE3;
}
}
if (m_util.is_bv_xor(lhs)) {
if (!m_bit1)
m_bit1 = is_one ? rhs : mk_one(1);
ptr_buffer new_args;
for (expr* arg : *to_app(lhs))
new_args.push_back(m.mk_eq(arg, m_bit1));
// TODO: bool xor is not flat_assoc... must fix that.
result = m.mk_xor(new_args);
if (is_one) {
return BR_REWRITE2;
}
else {
result = m.mk_not(result);
return BR_REWRITE3;
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_blast_eq_value(expr * lhs, expr * rhs, expr_ref & result) {
unsigned sz = get_bv_size(lhs);
if (sz == 1)
return BR_FAILED;
TRACE("blast_eq_value", tout << "sz: " << sz << "\n" << mk_pp(lhs, m) << "\n";);
if (is_numeral(lhs))
std::swap(lhs, rhs);
numeral v;
if (!is_numeral(rhs, v, sz))
return BR_FAILED;
if (!m_util.is_bv_or(lhs) && !m_util.is_bv_xor(lhs) && !m_util.is_bv_not(lhs))
return BR_FAILED;
numeral two(2);
ptr_buffer new_args;
for (unsigned i = 0; i < sz; i++) {
bool bit0 = (v % two).is_zero();
new_args.push_back(m.mk_eq(m_mk_extract(i,i, lhs),
mk_numeral(bit0 ? 0 : 1, 1)));
div(v, two, v);
}
result = m.mk_and(new_args);
return BR_REWRITE3;
}
br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) {
SASSERT(m_util.is_concat(lhs) || m_util.is_concat(rhs));
unsigned num1, num2;
expr * const * args1, * const * args2;
if (m_util.is_concat(lhs)) {
num1 = to_app(lhs)->get_num_args();
args1 = to_app(lhs)->get_args();
}
else {
num1 = 1;
args1 = &lhs;
}
if (m_util.is_concat(rhs)) {
num2 = to_app(rhs)->get_num_args();
args2 = to_app(rhs)->get_args();
}
else {
num2 = 1;
args2 = &rhs;
}
ptr_buffer new_eqs;
unsigned low1 = 0;
unsigned low2 = 0;
unsigned i1 = num1;
unsigned i2 = num2;
while (i1 > 0 && i2 > 0) {
expr * arg1 = args1[i1-1];
expr * arg2 = args2[i2-1];
unsigned sz1 = get_bv_size(arg1);
unsigned sz2 = get_bv_size(arg2);
SASSERT(low1 < sz1 && low2 < sz2);
unsigned rsz1 = sz1 - low1;
unsigned rsz2 = sz2 - low2;
if (rsz1 == rsz2) {
new_eqs.push_back(m.mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 = 0;
low2 = 0;
--i1;
--i2;
continue;
}
else if (rsz1 < rsz2) {
new_eqs.push_back(m.mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(rsz1 + low2 - 1, low2, arg2)));
low1 = 0;
low2 += rsz1;
--i1;
}
else {
new_eqs.push_back(m.mk_eq(m_mk_extract(rsz2 + low1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 += rsz2;
low2 = 0;
--i2;
}
}
SASSERT(i1 == 0 && i2 == 0);
SASSERT(new_eqs.size() >= 1);
result = m.mk_and(new_eqs);
return BR_REWRITE3;
}
bool bv_rewriter::is_concat_split_target(expr * t) const {
return
m_split_concat_eq ||
m_util.is_concat(t) ||
m_util.is_numeral(t) ||
m_util.is_bv_or(t);
}
bool bv_rewriter::is_minus_one_times_t(expr * arg) {
expr * t1, * t2;
return (m_util.is_bv_mul(arg, t1, t2) && is_minus_one(t1));
}
void bv_rewriter::mk_t1_add_t2_eq_c(expr * t1, expr * t2, expr * c, expr_ref & result) {
SASSERT(is_numeral(c));
if (is_minus_one_times_t(t1))
result = m.mk_eq(t2, m_util.mk_bv_sub(c, t1));
else
result = m.mk_eq(t1, m_util.mk_bv_sub(c, t2));
}
bool bv_rewriter::isolate_term(expr* lhs, expr* rhs, expr_ref& result) {
if (!m_util.is_numeral(lhs) || !is_add(rhs)) {
std::swap(lhs, rhs);
}
if (!m_util.is_numeral(lhs) || !is_add(rhs)) {
return false;
}
unsigned sz = to_app(rhs)->get_num_args();
expr * t1 = to_app(rhs)->get_arg(0);
expr_ref t2(m);
if (sz > 2) {
t2 = m.mk_app(get_fid(), OP_BADD, sz-1, to_app(rhs)->get_args()+1);
}
else {
SASSERT(sz == 2);
t2 = to_app(rhs)->get_arg(1);
}
mk_t1_add_t2_eq_c(t1, t2, lhs, result);
return true;
}
bool bv_rewriter::is_add_mul_const(expr* e) const {
if (!m_util.is_bv_add(e))
return false;
for (expr * arg : *to_app(e)) {
expr * c2, * x2;
if (m_util.is_numeral(arg))
continue;
if (m_util.is_bv_mul(arg, c2, x2) && m_util.is_numeral(c2))
continue;
return false;
}
return true;
}
bool bv_rewriter::is_concat_target(expr* lhs, expr* rhs) const {
return
(m_util.is_concat(lhs) && is_concat_split_target(rhs)) ||
(m_util.is_concat(rhs) && is_concat_split_target(lhs));
}
bool bv_rewriter::has_numeral(app* a) const {
for (unsigned i = 0; i < a->get_num_args(); ++i) {
if (is_numeral(a->get_arg(i))) {
return true;
}
}
return false;
}
br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
expr * c, * x;
numeral c_val, c_inv_val;
unsigned sz;
if (m_util.is_bv_mul(lhs, c, x) &&
m_util.is_numeral(c, c_val, sz) &&
c_val.mult_inverse(sz, c_inv_val)) {
SASSERT(m_util.norm(c_val * c_inv_val, sz).is_one());
numeral rhs_val;
// c * x = a
if (m_util.is_numeral(rhs, rhs_val, sz)) {
// x = c_inv * a
result = m.mk_eq(x, m_util.mk_numeral(c_inv_val * rhs_val, sz));
return BR_REWRITE1;
}
expr * c2, * x2;
numeral c2_val;
// c * x = c2 * x2
if (m_util.is_bv_mul(rhs, c2, x2) && m_util.is_numeral(c2, c2_val, sz)) {
// x = c_inv * c2 * x2
numeral new_c2 = m_util.norm(c_inv_val * c2_val, sz);
if (new_c2.is_one())
result = m.mk_eq(x, x2);
else
result = m.mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val * c2_val, sz), x2));
return BR_REWRITE1;
}
// c * x = t_1 + ... + t_n
// and t_i's have non-unary coefficients (this condition is used to make sure we are actually reducing the number of multipliers).
if (is_add_mul_const(rhs)) {
// Potential problem: this simplification may increase the number of adders by reducing the amount of sharing.
result = m.mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val, sz), rhs));
return BR_REWRITE2;
}
}
if (m_util.is_numeral(lhs, c_val, sz) && is_add_mul_const(rhs)) {
unsigned num_args = to_app(rhs)->get_num_args();
unsigned i = 0;
expr* c2, *x2;
numeral c2_val, c2_inv_val;
bool found = false;
for (; !found && i < num_args; ++i) {
expr* arg = to_app(rhs)->get_arg(i);
if (m_util.is_bv_mul(arg, c2, x2) && m_util.is_numeral(c2, c2_val, sz) &&
c2_val.mult_inverse(sz, c2_inv_val)) {
found = true;
}
}
if (found) {
result = m.mk_eq(m_util.mk_numeral(c2_inv_val*c_val, sz),
m_util.mk_bv_mul(m_util.mk_numeral(c2_inv_val, sz), rhs));
return BR_REWRITE3;
}
}
return BR_FAILED;
}
bool bv_rewriter::is_urem_any(expr * e, expr * & dividend, expr * & divisor) {
if (!m_util.is_bv_urem(e) && !m_util.is_bv_uremi(e))
return false;
const app * const a = to_app(e);
SASSERT(a->get_num_args() == 2);
dividend = a->get_arg(0);
divisor = a->get_arg(1);
return true;
}
br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (lhs == rhs) {
result = m.mk_true();
return BR_DONE;
}
if (is_numeral(lhs) && is_numeral(rhs)) {
result = m.mk_false();
return BR_DONE;
}
bool swapped = false;
if (is_numeral(lhs)) {
swapped = true;
std::swap(lhs, rhs);
}
#if 0
if (!gcd_test(lhs, rhs)) {
result = m.mk_false();
return BR_DONE;
}
#endif
br_status st;
if (m_bit2bool) {
st = mk_bit2bool(lhs, rhs, result);
if (st != BR_FAILED)
return st;
}
st = mk_mul_eq(lhs, rhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_pp(lhs, m) << "\n=\n" << mk_pp(rhs, m) << "\n----->\n" << mk_pp(result,m) << "\n";);
return st;
}
st = mk_mul_eq(rhs, lhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_pp(lhs, m) << "\n=\n" << mk_pp(rhs, m) << "\n----->\n" << mk_pp(result,m) << "\n";);
return st;
}
if (m_blast_eq_value) {
st = mk_blast_eq_value(lhs, rhs, result);
if (st != BR_FAILED)
return st;
}
{
expr * dividend;
expr * divisor;
numeral divisor_val, rhs_val;
unsigned divisor_sz, rhs_sz;
if (is_urem_any(lhs, dividend, divisor)
&& is_numeral(rhs, rhs_val, rhs_sz)
&& is_numeral(divisor, divisor_val, divisor_sz)) {
if (!divisor_val.is_zero() && rhs_val >= divisor_val) {//(= (bvurem x c1) c2) where c2 >= c1
result = m.mk_false();
return BR_DONE;
}
if ((divisor_val + rhs_val) >= rational::power_of_two(divisor_sz)) {//(= (bvurem x c1) c2) where c1+c2 >= 2^width
result = m.mk_eq(dividend, rhs);
return BR_REWRITE2;
}
}
}
expr_ref new_lhs(m);
expr_ref new_rhs(m);
if (m_util.is_bv_add(lhs) || m_util.is_bv_mul(lhs) || m_util.is_bv_add(rhs) || m_util.is_bv_mul(rhs)) {
st = cancel_monomials(lhs, rhs, false, new_lhs, new_rhs);
if (st != BR_FAILED) {
if (is_numeral(new_lhs) && is_numeral(new_rhs)) {
result = m.mk_bool_val(new_lhs == new_rhs);
return BR_DONE;
}
lhs = new_lhs;
rhs = new_rhs;
}
// Try to rewrite t1 + t2 = c --> t1 = c - t2
// Reason: it is much cheaper to bit-blast.
if (isolate_term(lhs, rhs, result)) {
return BR_REWRITE2;
}
if (is_concat_target(lhs, rhs)) {
return mk_eq_concat(lhs, rhs, result);
}
if (st != BR_FAILED) {
result = m.mk_eq(lhs, rhs);
return BR_DONE;
}
}
if (is_concat_target(lhs, rhs)) {
return mk_eq_concat(lhs, rhs, result);
}
if (swapped) {
result = m.mk_eq(lhs, rhs);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & result) {
if (m_mkbv2num) {
unsigned i;
for (i = 0; i < num; i++)
if (!m.is_true(args[i]) && !m.is_false(args[i]))
return BR_FAILED;
numeral val;
numeral two(2);
i = num;
while (i > 0) {
--i;
val *= two;
if (m.is_true(args[i]))
val++;
}
result = mk_numeral(val, num);
return BR_DONE;
}
return BR_FAILED;
}
bool bv_rewriter::is_bit(expr* t, unsigned& val) {
rational v;
unsigned sz;
return is_bv(t) && is_numeral(t, v, sz) && sz == 1 && (val = v.get_unsigned(), true);
}
bool bv_rewriter::is_eq_bit(expr * t, expr * & x, unsigned & val) {
expr* lhs, *rhs;
if (!m.is_eq(t, lhs, rhs))
return false;
if (is_bit(lhs, val)) {
x = rhs;
return true;
}
if (is_bit(rhs, val)) {
x = lhs;
return true;
}
return false;
}
br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & result) {
TRACE("bv_ite", tout << "mk_ite_core:\n" << mk_pp(c, m) << "?\n"
<< mk_pp(t, m) << "\n:" << mk_pp(e, m) << "\n";);
if (m.are_equal(t, e)) {
result = e;
return BR_REWRITE1;
}
if (m.is_not(c)) {
result = m.mk_ite(to_app(c)->get_arg(0), e, t);
return BR_REWRITE1;
}
// if x = 0 then 0 else 1
expr* t1;
unsigned bit1, bit2, bit3;
if (is_bv(t) && is_eq_bit(c, t1, bit1) && is_bit(t, bit2) && is_bit(e, bit3)) {
if (bit1 == bit2 && bit3 != bit2) {
result = t1;
return BR_DONE;
}
if (bit1 == bit3 && bit3 != bit2) {
result = m_util.mk_bv_not(t1);
return BR_REWRITE1;
}
}
if (m_ite2id && m.is_eq(c) && is_bv(t) && is_bv(e)) {
// detect when ite is actually some simple function based on the pattern (lhs=rhs) ? t : e
expr * lhs = to_app(c)->get_arg(0);
expr * rhs = to_app(c)->get_arg(1);
if (is_bv(rhs)) {
if (is_numeral(lhs))
std::swap(lhs, rhs);
if ( (m.are_equal(lhs, t) && m.are_equal(rhs, e))
|| (m.are_equal(lhs, e) && m.are_equal(rhs, t))) {
// (a = b ? a : b) is b. (a = b ? b : a) is a
result = e;
return BR_REWRITE1;
}
const unsigned sz = m_util.get_bv_size(rhs);
if (sz == 1) { // detect (lhs = N) ? C : D, where N, C, D are 1 bit numerals
numeral rhs_n, e_n, t_n;
unsigned rhs_sz, e_sz, t_sz;
if (is_numeral(rhs, rhs_n, rhs_sz)
&& is_numeral(t, t_n, t_sz) && is_numeral(e, e_n, e_sz)) {
if (t_sz == 1) {
SASSERT(rhs_sz == sz && e_sz == sz && t_sz == sz);
SASSERT(!m.are_equal(t, e));
result = m.are_equal(rhs, t) ? lhs : m_util.mk_bv_not(lhs);
return BR_REWRITE1;
}
if (rhs_n.is_one() && t_n.is_one() && e_n.is_zero()) {
return mk_zero_extend(t_sz - 1, lhs, result);
}
if (rhs_n.is_zero() && t_n.is_one() && e_n.is_zero()) {
return mk_zero_extend(t_sz - 1, m_util.mk_bv_not(lhs), result);
}
if (rhs_n.is_zero() && t_n.is_zero() && e_n.is_one()) {
return mk_zero_extend(t_sz - 1, lhs, result);
}
if (rhs_n.is_one() && t_n.is_zero() && e_n.is_one()) {
return mk_zero_extend(t_sz - 1, m_util.mk_bv_not(lhs), result);
}
}
}
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_distinct(unsigned num_args, expr * const * args, expr_ref & result) {
if (num_args <= 1) {
result = m.mk_true();
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
// check if num_args > 2^sz
if (sz >= 32)
return BR_FAILED;
if (num_args <= 1u << sz)
return BR_FAILED;
result = m.mk_false();
return BR_DONE;
}
br_status bv_rewriter::mk_bvsmul_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
result = m.mk_or(
m.mk_not(m_util.mk_bvsmul_no_ovfl(args[0], args[1])),
m.mk_not(m_util.mk_bvsmul_no_udfl(args[0], args[1]))
);
return BR_REWRITE_FULL;
}
br_status bv_rewriter::mk_bvumul_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
result = m.mk_not(m_util.mk_bvumul_no_ovfl(args[0], args[1]));
return BR_REWRITE2;
}
br_status bv_rewriter::mk_bvsmul_no_overflow(unsigned num, expr * const * args, bool is_overflow, expr_ref & result) {
SASSERT(num == 2);
unsigned bv_sz;
rational a0_val, a1_val;
bool is_num1 = is_numeral(args[0], a0_val, bv_sz);
bool is_num2 = is_numeral(args[1], a1_val, bv_sz);
if (is_num1 && (a0_val.is_zero() || (bv_sz != 1 && a0_val.is_one()))) {
result = m.mk_true();
return BR_DONE;
}
if (is_num2 && (a1_val.is_zero() || (bv_sz != 1 && a1_val.is_one()))) {
result = m.mk_true();
return BR_DONE;
}
if (!is_num1 || !is_num2)
return BR_FAILED;
bool sign0 = m_util.has_sign_bit(a0_val, bv_sz);
bool sign1 = m_util.has_sign_bit(a1_val, bv_sz);
if (sign0) a0_val = rational::power_of_two(bv_sz) - a0_val;
if (sign1) a1_val = rational::power_of_two(bv_sz) - a1_val;
rational lim = rational::power_of_two(bv_sz-1);
rational r = a0_val * a1_val;
if (is_overflow)
result = m.mk_bool_val(sign0 != sign1 || r < lim);
else
result = m.mk_bool_val(sign0 == sign1 || r <= lim);
return BR_DONE;
}
br_status bv_rewriter::mk_bvumul_no_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
unsigned bv_sz;
rational a0_val, a1_val;
bool is_num1 = is_numeral(args[0], a0_val, bv_sz);
bool is_num2 = is_numeral(args[1], a1_val, bv_sz);
if (is_num1 && (a0_val.is_zero() || a0_val.is_one())) {
result = m.mk_true();
return BR_DONE;
}
if (is_num2 && (a1_val.is_zero() || a1_val.is_one())) {
result = m.mk_true();
return BR_DONE;
}
if (is_num1 && is_num2) {
rational mr = a0_val * a1_val;
rational lim = rational::power_of_two(bv_sz);
result = m.mk_bool_val(mr < lim);
return BR_DONE;
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bvneg_overflow(expr * const arg, expr_ref & result) {
unsigned int sz = get_bv_size(arg);
auto minSigned = mk_numeral(rational::power_of_two(sz - 1), sz); // 0b1000...0
result = m.mk_eq(arg, minSigned);
return BR_REWRITE3;
}
br_status bv_rewriter::mk_bvuadd_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
unsigned sz = get_bv_size(args[0]);
auto a1 = mk_zero_extend(1, args[0]);
auto a2 = mk_zero_extend(1, args[1]);
auto r = mk_bv_add(a1, a2);
auto extract = m_mk_extract(sz, sz, r);
result = m.mk_eq(extract, mk_one(1));
return BR_REWRITE_FULL;
}
br_status bv_rewriter::mk_bvsadd_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
unsigned sz = get_bv_size(args[0]);
auto zero = mk_zero(sz);
auto r = mk_bv_add(args[0], args[1]);
auto l1 = m_util.mk_slt(zero, args[0]);
auto l2 = m_util.mk_slt(zero, args[1]);
auto args_pos = m.mk_and(l1, l2);
auto non_pos_sum = m_util.mk_sle(r, zero);
result = m.mk_and(args_pos, non_pos_sum);
return BR_REWRITE_FULL;
}
br_status bv_rewriter::mk_bvsadd_underflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
unsigned sz = get_bv_size(args[0]);
auto zero = mk_zero(sz);
auto r = mk_bv_add(args[0], args[1]);
auto l1 = m_util.mk_slt(args[0], zero);
auto l2 = m_util.mk_slt(args[1], zero);
auto args_neg = m.mk_and(l1, l2);
expr_ref non_neg_sum{m};
auto res_rewrite = mk_sge(r, zero, non_neg_sum);
SASSERT(res_rewrite != BR_FAILED); (void)res_rewrite;
result = m.mk_and(args_neg, non_neg_sum);
return BR_REWRITE_FULL;
}
br_status bv_rewriter::mk_bvsadd_over_underflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
expr_ref l1{m};
expr_ref l2{m};
(void)mk_bvsadd_overflow(2, args, l1);
(void)mk_bvsadd_underflow(2, args, l2);
result = m.mk_or(l1, l2);
return BR_REWRITE_FULL;
}
br_status bv_rewriter::mk_bvusub_underflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
br_status status = mk_ult(args[0], args[1], result);
SASSERT(status != BR_FAILED);
return status;
}
//
// no_overflow := if t2 = min_int then t1 no_underflow(t1 + -t2)
// over_underflow := 0 =s 0 || t2 != min_int & under_overflow+(t1 + -t2)
// := if t2 == min_int then t1 >=s 0 else under_overflow+(t1 + -t2)
// because when 0 ;