z3-z3-4.13.0.src.ast.rewriter.elim_bounds.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
elim_bounds2.h
Abstract:
Author:
Leonardo de Moura (leonardo) 2008-06-28.
Revision History:
--*/
#pragma once
#include "ast/ast.h"
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/rewriter.h"
/**
\brief Functor for eliminating irrelevant bounds in quantified formulas.
Example:
(forall (x Int) (y Int) (or (not (>= y x) (not (>= x 0)) (= (select a x) 1))))
The bound (>= y x) is irrelevant and can be eliminated.
This can be easily proved by using Fourier-Motzkin elimination.
Limitations & Assumptions:
- It assumes the input formula was already simplified.
- It can only handle bounds in the diff-logic fragment.
\remark This operation is subsumed by Fourier-Motzkin elimination.
*/
class elim_bounds_cfg : public default_rewriter_cfg {
ast_manager & m;
arith_util m_util;
bool is_bound(expr * n, var * & lower, var * & upper);
bool is_bound(expr * n);
public:
elim_bounds_cfg(ast_manager & m);
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr);
};
/**
\brief Functor for applying elim_bounds2 in all
universal quantifiers in an expression.
Assumption: the formula was already skolemized.
*/
class elim_bounds_rw : public rewriter_tpl {
protected:
elim_bounds_cfg m_cfg;
public:
elim_bounds_rw(ast_manager & m):
rewriter_tpl(m, m.proofs_enabled(), m_cfg),
m_cfg(m)
{}
};