z3-z3-4.13.0.src.ast.rewriter.pb_rewriter_def.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
pb_rewriter_def.h
Abstract:
Basic rewriting rules for PB constraints.
Author:
Nikolaj Bjorner (nbjorner) 2013-14-12
Notes:
--*/
#pragma once
#include "ast/rewriter/pb_rewriter.h"
template
void pb_rewriter_util::display(std::ostream& out, typename PBU::args_t& args, typename PBU::numeral& k, bool is_eq) {
for (unsigned i = 0; i < args.size(); ++i) {
out << args[i].second << " * ";
m_util.display(out, args[i].first);
out << " ";
if (i+1 < args.size()) out << "+ ";
}
out << (is_eq?" = ":" >= ") << k << "\n";
}
template
void pb_rewriter_util::unique(typename PBU::args_t& args, typename PBU::numeral& k, bool is_eq) {
TRACE("pb_verbose", display(tout << "pre-unique:", args, k, is_eq););
for (unsigned i = 0; i < args.size(); ++i) {
if (m_util.is_negated(args[i].first)) {
args[i].first = m_util.negate(args[i].first);
k -= args[i].second;
args[i].second = -args[i].second;
}
}
// remove constants
unsigned j = 0, sz = args.size();
for (unsigned i = 0; i < sz; ++i) {
if (m_util.is_true(args[i].first)) {
k -= args[i].second;
}
else if (m_util.is_false(args[i].first)) {
// no-op
}
else {
args[j++] = args[i];
}
}
args.shrink(j);
// sort and coalesce arguments:
typename PBU::compare cmp;
std::sort(args.begin(), args.end(), cmp);
// coallesce
unsigned i;
for (i = 0, j = 1; j < args.size(); ++j) {
if (args[i].first == args[j].first) {
args[i].second += args[j].second;
}
else {
++i;
args[i] = args[j];
}
}
args.resize(i+1);
// remove 0s.
for (i = 0, j = 0; j < args.size(); ++j) {
if (!args[j].second.is_zero()) {
if (i != j) {
args[i] = args[j];
}
++i;
}
}
args.resize(i);
TRACE("pb_verbose", display(tout << "post-unique:", args, k, is_eq););
}
template
lbool pb_rewriter_util::normalize(typename PBU::args_t& args, typename PBU::numeral& k, bool is_eq) {
TRACE("pb_verbose", display(tout << "pre-normalize:", args, k, is_eq););
DEBUG_CODE(
bool found = false;
for (unsigned i = 0; !found && i < args.size(); ++i) {
found = args[i].second.is_zero();
}
if (found) display(verbose_stream(), args, k, is_eq);
SASSERT(!found););
//
// Ensure all coefficients are positive:
// c*l + y >= k
// <=>
// c*(1-~l) + y >= k
// <=>
// c - c*~l + y >= k
// <=>
// -c*~l + y >= k - c
//
typename PBU::numeral sum(0);
for (unsigned i = 0; i < args.size(); ++i) {
typename PBU::numeral c = args[i].second;
if (c.is_neg()) {
args[i].second = -c;
args[i].first = m_util.negate(args[i].first);
k -= c;
}
sum += args[i].second;
}
// detect tautologies:
if (!is_eq && k <= PBU::numeral::zero()) {
args.reset();
k = PBU::numeral::zero();
return l_true;
}
if (is_eq && k.is_zero() && args.empty()) {
return l_true;
}
// detect infeasible constraints:
if (sum < k) {
args.reset();
k = PBU::numeral::one();
return l_false;
}
if (is_eq && k == sum) {
for (unsigned i = 0; i < args.size(); ++i) {
args[i].second = PBU::numeral::one();
}
typename PBU::numeral num(args.size());
k = num;
return l_undef;
}
bool all_int = true;
for (unsigned i = 0; all_int && i < args.size(); ++i) {
all_int = args[i].second.is_int();
}
if (!all_int) {
// normalize to integers.
typename PBU::numeral d(denominator(k));
for (unsigned i = 0; i < args.size(); ++i) {
d = lcm(d, denominator(args[i].second));
}
SASSERT(!d.is_one());
k *= d;
for (unsigned i = 0; i < args.size(); ++i) {
args[i].second *= d;
}
}
if (is_eq && k.is_neg()) {
return l_false;
}
if (is_eq) {
TRACE("pb_verbose", display(tout << "post-normalize:", args, k, is_eq););
return l_undef;
}
// Ensure the largest coefficient is not larger than k:
sum = PBU::numeral::zero();
for (unsigned i = 0; i < args.size(); ++i) {
typename PBU::numeral c = args[i].second;
if (c > k) {
args[i].second = k;
}
sum += args[i].second;
}
SASSERT(!args.empty());
// normalize tight inequalities to unit coefficients.
if (sum == k) {
for (unsigned i = 0; i < args.size(); ++i) {
args[i].second = PBU::numeral::one();
}
typename PBU::numeral num(args.size());
k = num;
}
// apply cutting plane reduction:
typename PBU::numeral g(0);
for (unsigned i = 0; !g.is_one() && i < args.size(); ++i) {
typename PBU::numeral c = args[i].second;
if (c != k) {
if (g.is_zero()) {
g = c;
}
else {
g = gcd(g, c);
}
}
}
if (g.is_zero()) {
// all coefficients are equal to k.
for (unsigned i = 0; i < args.size(); ++i) {
SASSERT(args[i].second == k);
args[i].second = PBU::numeral::one();
}
k = PBU::numeral::one();
}
else if (g > PBU::numeral::one()) {
//
// Example 5x + 5y + 2z + 2u >= 5
// becomes 3x + 3y + z + u >= 3
//
typename PBU::numeral k_new = div(k, g);
if (!(k % g).is_zero()) { // k_new is the ceiling of k / g.
k_new++;
}
for (unsigned i = 0; i < args.size(); ++i) {
SASSERT(args[i].second.is_pos());
typename PBU::numeral c = args[i].second;
if (c == k) {
c = k_new;
}
else {
c = div(c, g);
}
args[i].second = c;
SASSERT(args[i].second.is_pos());
}
k = k_new;
}
//
// normalize coefficients that fall within a range
// k/n <= ... < k/(n-1) for some n = 1,2,...
//
// e.g, k/n <= min <= max < k/(n-1)
// k/min <= n, n-1 < k/max
// . floor(k/max) = ceil(k/min) - 1
// . floor(k/max) < k/max
//
// example: k = 5, min = 3, max = 4: 5/3 -> 2 5/4 -> 1, n = 2
// replace all coefficients by 1, and k by 2.
//
if (!k.is_one()) {
typename PBU::numeral min = args[0].second, max = args[0].second;
for (unsigned i = 1; i < args.size(); ++i) {
if (args[i].second < min) min = args[i].second;
if (args[i].second > max) max = args[i].second;
}
SASSERT(min.is_pos());
typename PBU::numeral n0 = k/max;
typename PBU::numeral n1 = floor(n0);
typename PBU::numeral n2 = ceil(k/min) - PBU::numeral::one();
if (n1 == n2 && !n0.is_int()) {
for (unsigned i = 0; i < args.size(); ++i) {
args[i].second = PBU::numeral::one();
}
k = n1 + PBU::numeral::one();
}
}
TRACE("pb_verbose", display(tout << "post-normalize:", args, k, is_eq););
return l_undef;
}
template
void pb_rewriter_util::prune(typename PBU::args_t& args, typename PBU::numeral& k, bool is_eq) {
if (is_eq) {
return;
}
typename PBU::numeral nlt(0);
unsigned occ = 0;
for (unsigned i = 0; nlt < k && i < args.size(); ++i) {
if (args[i].second < k) {
nlt += args[i].second;
++occ;
}
}
if (0 < occ && nlt < k) {
for (unsigned i = 0; i < args.size(); ++i) {
if (args[i].second < k) {
args[i] = args.back();
args.pop_back();
--i;
}
}
unique(args, k, is_eq);
normalize(args, k, is_eq);
}
}