z3-z3-4.13.0.src.ast.rewriter.seq_axioms.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
seq_axioms.h
Abstract:
Axiomatize string operations that can be reduced to
more basic operations.
Author:
Nikolaj Bjorner (nbjorner) 2020-4-16
Revision History:
--*/
#pragma once
#include "ast/seq_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/rewriter/seq_skolem.h"
namespace seq {
class axioms {
ast_manager& m;
th_rewriter& m_rewrite;
arith_util a;
seq_util seq;
skolem m_sk;
expr_ref_vector m_clause;
expr_ref_vector m_trail;
obj_map m_purified;
std::function m_add_clause;
std::function m_set_phase;
std::function m_ensure_digits;
expr_ref mk_len(expr* s);
expr_ref mk_sub(expr* x, expr* y);
expr_ref mk_concat(expr* e1, expr* e2, expr* e3) { return expr_ref(seq.str.mk_concat(e1, e2, e3), m); }
expr_ref mk_concat(expr* e1, expr* e2) { return expr_ref(seq.str.mk_concat(e1, e2), m); }
expr_ref mk_nth(expr* e, unsigned i) { return expr_ref(seq.str.mk_nth_i(e, a.mk_int(i)), m); }
expr_ref mk_eq(expr* a, expr* b) { return expr_ref(m.mk_eq(a, b), m); }
expr_ref mk_seq_eq(expr* a, expr* b);
expr_ref mk_eq_empty(expr* e);
expr_ref mk_ge_e(expr* x, expr* y);
expr_ref mk_le_e(expr* x, expr* y);
void gc_purify();
expr_ref purify(expr* e);
expr_ref mk_digit2int(expr* ch);
void add_clause(expr_ref const& a);
void add_clause(expr_ref const& a, expr_ref const& b);
void add_clause(expr_ref const& a, expr_ref const& b, expr_ref const& c);
void add_clause(expr_ref const& a, expr_ref const& b, expr_ref const& c, expr_ref const & d);
void add_clause(expr_ref const& a, expr_ref const& b, expr_ref const& c, expr_ref const & d, expr_ref const& e);
bool is_drop_last(expr* s, expr* i, expr* l);
bool is_tail(expr* s, expr* i, expr* l);
bool is_extract_prefix(expr* s, expr* i, expr* l);
bool is_extract_suffix(expr* s, expr* i, expr* l);
void tail_axiom(expr* e, expr* s);
void drop_last_axiom(expr* e, expr* s);
bool small_segment_axiom(expr* e, expr* s, expr* i, expr* l);
void extract_prefix_axiom(expr* e, expr* s, expr* l);
void extract_suffix_axiom(expr* e, expr* s, expr* l);
void tightest_prefix(expr* s, expr* x);
public:
axioms(th_rewriter& rw);
void set_add_clause(std::function& ac) { m_add_clause = ac; }
void set_phase(std::function& sp) { m_set_phase = sp; }
void set_ensure_digits(std::function& ed) { m_ensure_digits = ed; }
void suffix_axiom(expr* n);
void prefix_axiom(expr* n);
void extract_axiom(expr* n);
void indexof_axiom(expr* n);
void last_indexof_axiom(expr* n);
void replace_axiom(expr* n);
void at_axiom(expr* n);
void nth_axiom(expr* n);
void itos_axiom(expr* n);
void stoi_axiom(expr* n);
void stoi_axiom(expr* e, unsigned k);
void itos_axiom(expr* s, unsigned k);
void ubv2s_axiom(expr* b, unsigned k);
void ubv2s_len_axiom(expr* b, unsigned k);
void ubv2s_len_axiom(expr* b);
void ubv2ch_axiom(sort* bv_sort);
void lt_axiom(expr* n);
void le_axiom(expr* n);
void is_digit_axiom(expr* n);
void str_to_code_axiom(expr* n);
void str_from_code_axiom(expr* n);
void unit_axiom(expr* n);
void length_axiom(expr* n);
void unroll_not_contains(expr* e);
void replace_re_axiom(expr* e);
void replace_all_axiom(expr* e);
void replace_re_all_axiom(expr* e);
expr_ref length_limit(expr* s, unsigned k);
expr_ref is_digit(expr* ch);
expr_ref mk_ge(expr* x, int n) { return mk_ge_e(x, a.mk_int(n)); }
expr_ref mk_le(expr* x, int n) { return mk_le_e(x, a.mk_int(n)); }
expr_ref mk_ge(expr* x, rational const& n) { return mk_ge_e(x, a.mk_int(n)); }
expr_ref mk_le(expr* x, rational const& n) { return mk_le_e(x, a.mk_int(n)); }
void rewrite(expr_ref& e) { m_rewrite(e); }
skolem& sk() { return m_sk; }
};
};