z3-z3-4.13.0.src.ast.simplifiers.bound_manager.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
bound_manager.cpp
Abstract:
Collect bounds.
Author:
Leonardo (leonardo) 2011-05-16
Notes:
--*/
#include "ast/ast_smt2_pp.h"
#include "ast/ast_pp.h"
#include "ast/ast_translation.h"
#include "ast/simplifiers/bound_manager.h"
bound_manager::bound_manager(ast_manager & m):
m_util(m),
m_bounded_vars(m) {
}
bound_manager::~bound_manager() {
reset();
}
bound_manager* bound_manager::translate(ast_manager& dst_m) {
bound_manager* result = alloc(bound_manager, dst_m);
ast_translation tr(m(), dst_m);
expr_dependency_translation edtr(tr);
for (auto& kv : m_lowers) result->m_lowers.insert(tr(kv.m_key), kv.m_value);
for (auto& kv : m_uppers) result->m_uppers.insert(tr(kv.m_key), kv.m_value);
for (auto& kv : m_lower_deps) result->m_lower_deps.insert(tr(kv.m_key), edtr(kv.m_value));
for (auto& kv : m_upper_deps) result->m_upper_deps.insert(tr(kv.m_key), edtr(kv.m_value));
for (expr* e : m_bounded_vars) result->m_bounded_vars.push_back(tr(e));
return result;
}
static decl_kind swap_decl(decl_kind k) {
switch (k) {
case OP_LE: return OP_GE;
case OP_LT: return OP_GT;
case OP_GE: return OP_LE;
case OP_GT: return OP_LT;
default:
UNREACHABLE();
return k;
}
}
decl_kind bound_manager::neg(decl_kind k) {
switch (k) {
case OP_LE: return OP_GT;
case OP_LT: return OP_GE;
case OP_GE: return OP_LT;
case OP_GT: return OP_LE;
default:
UNREACHABLE();
return k;
}
}
void bound_manager::norm(numeral & n, decl_kind & k) {
switch (k) {
case OP_LE: return;
case OP_GE: return;
case OP_LT:
// x < n --> x <= n-1
n--;
k = OP_LE;
return;
case OP_GT:
// x > n --> x >= n+1
n++;
k = OP_GE;
return;
default:
return;
}
}
static bool is_lower(decl_kind k) {
return k == OP_GT || k == OP_GE;
}
static bool is_strict(decl_kind k) {
return k == OP_LT || k == OP_GT;
}
bool bound_manager::is_numeral(expr* v, numeral& n, bool& is_int) {
expr* w;
if (m_util.is_uminus(v, w) && is_numeral(w, n, is_int)) {
n.neg();
return true;
}
return m_util.is_numeral(v, n, is_int);
}
void bound_manager::operator()(expr * f, expr_dependency * d, proof* p) {
if (p)
return;
TRACE("bound_manager", tout << "processing:\n" << mk_ismt2_pp(f, m()) << "\n";);
expr * v;
numeral n;
if (is_disjunctive_bound(f, d))
return;
if (is_equality_bound(f, d))
return;
bool pos = true;
while (m().is_not(f, f))
pos = !pos;
if (!is_app(f))
return;
app * t = to_app(f);
if (t->get_family_id() != m_util.get_family_id())
return;
decl_kind k = t->get_decl_kind();
if (k != OP_LE && k != OP_GE && k != OP_LT && k != OP_GT)
return;
expr * lhs = t->get_arg(0);
expr * rhs = t->get_arg(1);
bool is_int;
if (is_uninterp_const(lhs) && is_numeral(rhs, n, is_int)) {
v = lhs;
}
else if (is_uninterp_const(rhs) && is_numeral(lhs, n, is_int)) {
v = rhs;
k = swap_decl(k);
}
else {
return;
}
if (!pos)
k = neg(k);
if (is_int)
norm(n, k);
TRACE("bound_manager", tout << "found bound for:\n" << mk_ismt2_pp(v, m()) << "\n";);
bool strict = is_strict(k);
if (is_lower(k)) {
insert_lower(v, strict, n, d);
}
else {
insert_upper(v, strict, n, d);
}
}
void bound_manager::insert_upper(expr * v, bool strict, numeral const & n, expr_dependency * d) {
limit old;
if (m_uppers.find(v, old)) {
if (n < old.first || (n == old.first && strict && !old.second)) {
// improved bound
m_uppers.insert(v, limit(n, strict));
if (d)
m_upper_deps.insert(v, d);
}
}
else {
m_uppers.insert(v, limit(n, strict));
if (d)
m_upper_deps.insert(v, d);
if (!m_lowers.contains(v)) {
m_bounded_vars.push_back(v);
}
}
}
void bound_manager::insert_lower(expr * v, bool strict, numeral const & n, expr_dependency * d) {
limit old;
if (m_lowers.find(v, old)) {
if (n > old.first || (n == old.first && strict && !old.second)) {
// improved bound
m_lowers.insert(v, limit(n, strict));
if (d)
m_lower_deps.insert(v, d);
}
}
else {
m_lowers.insert(v, limit(n, strict));
if (d)
m_lower_deps.insert(v, d);
if (!m_uppers.contains(v)) {
m_bounded_vars.push_back(v);
}
}
}
bool bound_manager::is_equality_bound(expr * f, expr_dependency * d) {
expr* x, *y, *z, *u;
if (!m().is_eq(f, x, y))
return false;
if (!is_uninterp_const(x))
std::swap(x, y);
numeral n;
bool is_int;
if (is_uninterp_const(x) && is_numeral(y, n, is_int)) {
insert_lower(x, false, n, d);
insert_upper(x, false, n, d);
return true;
}
// x = y mod n => 0 <= x < n
if (m_util.is_mod(y, z, u) && is_numeral(u, n, is_int) && n > 0) {
insert_lower(x, false, rational::zero(), d);
insert_upper(x, false, n - 1, d);
return true;
}
return false;
}
bool bound_manager::is_disjunctive_bound(expr * f, expr_dependency * d) {
numeral lo, hi, n;
if (!m().is_or(f)) return false;
unsigned sz = to_app(f)->get_num_args();
if (sz == 0) return false;
expr * x, * y, * v = nullptr;
bool is_int;
for (unsigned i = 0; i < sz; ++i) {
expr * e = to_app(f)->get_arg(i);
if (!m().is_eq(e, x, y)) return false;
if (is_uninterp_const(x) &&
is_numeral(y, n, is_int) && is_int &&
(x == v || v == nullptr)) {
if (v == nullptr) { v = x; lo = hi = n; }
if (n < lo) lo = n;
if (n > hi) hi = n;
}
else if (is_uninterp_const(y) &&
is_numeral(x, n, is_int) && is_int &&
(y == v || v == nullptr)) {
if (v == nullptr) { v = y; lo = hi = n; }
if (n < lo) lo = n;
if (n > hi) hi = n;
}
else {
return false;
}
}
TRACE("bound_manager", tout << "bounds: " << lo << " " << hi << "\n";);
insert_lower(v, false, lo, d);
insert_upper(v, false, hi, d);
return true;
}
void bound_manager::reset() {
m_bounded_vars.finalize();
m_lowers.finalize();
m_uppers.finalize();
m_lower_deps.finalize();
m_upper_deps.finalize();
}
bool bound_manager::inconsistent() const {
for (auto const& [k,v] : m_lowers) {
limit const& lim1 = v;
limit lim2;
if (m_uppers.find(k, lim2)) {
if (lim1.first > lim2.first)
return true;
if (lim1.first == lim2.first &&
!lim1.second && lim2.second) {
return true;
}
}
}
return false;
}
void bound_manager::display(std::ostream & out) const {
numeral n; bool strict;
for (iterator it = begin(); it != end(); ++it) {
expr * v = *it;
if (has_lower(v, n, strict))
out << n << " " << (strict ? "<" : "<=");
else
out << "-oo <";
out << " " << mk_ismt2_pp(v, m()) << " ";
if (has_upper(v, n, strict))
out << (strict ? "<" : "<=") << " " << n;
else
out << "< oo";
out << "\n";
}
}