All Downloads are FREE. Search and download functionalities are using the official Maven repository.

z3-z3-4.13.0.src.math.dd.dd_bdd.h Maven / Gradle / Ivy

The newest version!
/*++
Copyright (c) 2017 Microsoft Corporation

Module Name:

    dd_bdd

Abstract:

    Simple BDD package modeled after BuDDy, which is modeled after CUDD.

Author:

    Nikolaj Bjorner (nbjorner) 2017-10-13

Revision History:

--*/
#pragma once

#include "util/vector.h"
#include "util/map.h"
#include "util/small_object_allocator.h"
#include "util/rational.h"

namespace dd {

    class bdd;
    class bddv;
    class test_bdd;

    class bdd_manager {
        friend bdd;
        friend bddv;
        friend test_bdd;

        typedef unsigned BDD;

        const BDD null_bdd = UINT_MAX;

        enum bdd_op {
            bdd_and_op = 2,
            bdd_or_op = 3,
            bdd_xor_op = 4,
            bdd_not_op = 5,
            bdd_and_proj_op = 6,
            bdd_or_proj_op = 7,
	    bdd_cofactor_op = 8,
            bdd_no_op = 9,
        };

        struct bdd_node {
            bdd_node(unsigned level, BDD lo, BDD hi):
                m_refcount(0),
                m_level(level),
                m_lo(lo),
                m_hi(hi),
                m_index(0)
            {}
            bdd_node(): m_refcount(0), m_level(0), m_lo(0), m_hi(0), m_index(0) {}
            unsigned m_refcount : 10;
            unsigned m_level : 22;
            BDD      m_lo;
            BDD      m_hi;
            unsigned m_index;
            unsigned hash() const { return mk_mix(m_level, m_lo, m_hi); }
            bool is_internal() const { return m_lo == 0 && m_hi == 0; }
            void set_internal() { m_lo = 0; m_hi = 0; }
        };

        enum cost_metric {
            cnf_cost,
            dnf_cost,
            bdd_cost
        };

        struct hash_node {
            unsigned operator()(bdd_node const& n) const { return n.hash(); }
        };

        struct eq_node {
            bool operator()(bdd_node const& a, bdd_node const& b) const {
                return a.m_lo == b.m_lo && a.m_hi == b.m_hi && a.m_level == b.m_level;
            }
        };
        
        typedef hashtable node_table;

        struct op_entry {
            op_entry(BDD l, BDD r, BDD op):
                m_bdd1(l),
                m_bdd2(r),
                m_op(op),
                m_result(0)
            {}

            BDD      m_bdd1;
            BDD      m_bdd2;
            BDD      m_op;
            BDD      m_result;
            unsigned hash() const { return mk_mix(m_bdd1, m_bdd2, m_op); }
        };

        struct hash_entry {
            unsigned operator()(op_entry* e) const { return e->hash(); }
        };

        struct eq_entry {
            bool operator()(op_entry * a, op_entry * b) const { 
                return a->m_bdd1 == b->m_bdd2 && a->m_bdd2 == b->m_bdd2 && a->m_op == b->m_op;
            }
        };

        typedef ptr_hashtable op_table;

        svector          m_nodes;
        op_table                   m_op_cache;
        node_table                 m_node_table;
        unsigned_vector            m_apply_const;
        svector               m_bdd_stack;
        op_entry*                  m_spare_entry;
        svector               m_var2bdd;
        unsigned_vector            m_var2level, m_level2var;
        unsigned_vector            m_free_nodes;
        small_object_allocator     m_alloc;
        mutable svector  m_mark;
        mutable unsigned           m_mark_level;
        mutable svector    m_count;
        mutable svector       m_todo;
        bool                       m_disable_gc;
        bool                       m_is_new_node;
        unsigned                   m_max_num_bdd_nodes;
        unsigned_vector            m_S, m_T, m_to_free;  // used for reordering
        vector    m_level2nodes;
        unsigned_vector            m_reorder_rc;
        cost_metric                m_cost_metric;
        BDD                        m_cost_bdd;

        BDD make_node(unsigned level, BDD l, BDD r);
        bool is_new_node() const { return m_is_new_node; }

        BDD apply_const(BDD a, BDD b, bdd_op op);
        BDD apply(BDD arg1, BDD arg2, bdd_op op);
        BDD mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op);

        BDD apply_rec(BDD arg1, BDD arg2, bdd_op op);
        BDD mk_not_rec(BDD b);
        BDD mk_ite_rec(BDD a, BDD b, BDD c);
        BDD mk_quant_rec(unsigned lvl, BDD b, bdd_op op);
	BDD mk_cofactor_rec(BDD a, BDD b);

        void push(BDD b);
        void pop(unsigned num_scopes);
        BDD read(unsigned index);

        op_entry* pop_entry(BDD l, BDD r, BDD op);
        void push_entry(op_entry* e);
        bool check_result(op_entry*& e1, op_entry const* e2, BDD a, BDD b, BDD c);
        
        double count(BDD b, unsigned z);

        void alloc_free_nodes(unsigned n);
        void init_mark();
        void set_mark(unsigned i) { m_mark[i] = m_mark_level; }
        bool is_marked(unsigned i) { return m_mark[i] == m_mark_level; }

        void init_reorder();
        void reorder_incref(unsigned n);
        void reorder_decref(unsigned n);
        void sift_up(unsigned level);
        void sift_var(unsigned v);
        double current_cost();
        bool is_bad_cost(double new_cost, double best_cost) const;

        static const BDD false_bdd = 0;
        static const BDD true_bdd = 1;
        static const unsigned max_rc = (1 << 10) - 1;

        inline bool is_true(BDD b) const { return b == true_bdd; }
        inline bool is_false(BDD b) const { return b == false_bdd; }
        inline bool is_const(BDD b) const { return b <= 1; }
        inline unsigned level(BDD b) const { return m_nodes[b].m_level; }
        inline unsigned var(BDD b) const { return m_level2var[level(b)]; }
        inline BDD lo(BDD b) const { return m_nodes[b].m_lo; }
        inline BDD hi(BDD b) const { return m_nodes[b].m_hi; }
        inline void inc_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount++; VERIFY(!m_free_nodes.contains(b)); }
        inline void dec_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount--; VERIFY(!m_free_nodes.contains(b)); }
        inline BDD level2bdd(unsigned l) const { return m_var2bdd[m_level2var[l]]; }

        double dnf_size(BDD b) { return count(b, 0); }
        double cnf_size(BDD b) { return count(b, 1); }
        unsigned bdd_size(bdd const& b);

        bdd mk_not(bdd b);
        bdd mk_and(bdd const& a, bdd const& b);
        bdd mk_or(bdd const& a, bdd const& b);
        bdd mk_xor(bdd const& a, bdd const& b);
	bdd mk_cofactor(bdd const& a, bdd const& b);

        void reserve_var(unsigned v);
        bool well_formed();

        struct scoped_push {
            bdd_manager& m;
            unsigned     m_size;
            scoped_push(bdd_manager& m) :m(m), m_size(m.m_bdd_stack.size()) {}
            ~scoped_push() { m.m_bdd_stack.shrink(m_size); }
        };

        bool_vector mk_usub(bool_vector const& b);


    public:
        struct mem_out {};

        bdd_manager(unsigned num_vars);
        ~bdd_manager();

        void set_max_num_nodes(unsigned n) { m_max_num_bdd_nodes = n; }

        bdd mk_var(unsigned i);
        bdd mk_nvar(unsigned i);

        bdd mk_true();
        bdd mk_false();

        bdd mk_exists(unsigned n, unsigned const* vars, bdd const & b);
        bdd mk_forall(unsigned n, unsigned const* vars, bdd const & b);
        bdd mk_exists(unsigned v, bdd const& b);
        bdd mk_forall(unsigned v, bdd const& b);
        bdd mk_ite(bdd const& c, bdd const& t, bdd const& e);

        /* BDD vector operations
         * - Fixed-width arithmetic, i.e., modulo 2^size
         * - The lowest index is the LSB
         */
        bdd mk_ule(bddv const& a, bddv const& b);
        bdd mk_uge(bddv const& a, bddv const& b); // { return mk_ule(b, a); }
        bdd mk_ult(bddv const& a, bddv const& b); // { return mk_ule(a, b) && !mk_eq(a, b); }
        bdd mk_ugt(bddv const& a, bddv const& b); // { return mk_ult(b, a); }
        bdd mk_sle(bddv const& a, bddv const& b);
        bdd mk_sge(bddv const& a, bddv const& b); // { return mk_sle(b, a); }
        bdd mk_slt(bddv const& a, bddv const& b); // { return mk_sle(a, b) && !mk_eq(a, b); }
        bdd mk_sgt(bddv const& a, bddv const& b); // { return mk_slt(b, a); }
        bdd mk_eq(bddv const& a, bddv const& b);
        bdd mk_eq(bddv const& a, rational const& v);
        bdd mk_eq(unsigned_vector const& vars, rational const& v);
        bddv mk_num(rational const& n, unsigned num_bits);
        bddv mk_ones(unsigned num_bits);
        bddv mk_zero(unsigned num_bits);
        bddv mk_var(unsigned num_bits, unsigned const* vars);
        bddv mk_var(unsigned_vector const& vars);
        bddv mk_add(bddv const& a, bddv const& b);
        bddv mk_add(bddv const& a, std::function& get_bit);
        bddv mk_sub(bddv const& a, bddv const& b);
        bddv mk_usub(bddv const& a);
        bddv mk_mul(bddv const& a, bddv const& b);
        bddv mk_mul(bddv const& a, bool_vector const& b);
        bddv mk_mul(bddv const& a, rational const& val);
        bddv mk_concat(bddv const& a, bddv const& b);
        void mk_quot_rem(bddv const& a, bddv const& b, bddv& quot, bddv& rem);
        bool is_constv(bddv const& a);
        rational to_val(bddv const& a);


        std::ostream& display(std::ostream& out);
        std::ostream& display(std::ostream& out, bdd const& b);

        void gc();
        void try_reorder();
        void try_cnf_reorder(bdd const& b);
    };

    class bdd {
        friend class bdd_manager;
        unsigned     root;
        bdd_manager* m;
        bdd(unsigned root, bdd_manager* m): root(root), m(m) { m->inc_ref(root); }
    public:
        bdd(bdd const & other): root(other.root), m(other.m) { m->inc_ref(root); }
        bdd(bdd && other) noexcept : root(0), m(other.m) { std::swap(root, other.root); }
        bdd& operator=(bdd const& other);
        ~bdd() { m->dec_ref(root); }
        bdd lo() const { return bdd(m->lo(root), m); }
        bdd hi() const { return bdd(m->hi(root), m); }
        unsigned var() const { return m->var(root); }

        bool is_true() const { return root == bdd_manager::true_bdd; }
        bool is_false() const { return root == bdd_manager::false_bdd; }
        bool is_const() const { return is_false() || is_true(); }

        bdd operator!() const { return m->mk_not(*this); }
        bdd operator&&(bdd const& other) const { return m->mk_and(*this, other); }
        bdd operator||(bdd const& other) const { return m->mk_or(*this, other); }
        bdd operator^(bdd const& other) const { return m->mk_xor(*this, other); }
        bdd operator|=(bdd const& other) { return *this = *this || other; }
        bdd operator&=(bdd const& other) { return *this = *this && other; }
	bdd cofactor(bdd const& cube) { return m->mk_cofactor(*this, cube); }
        std::ostream& display(std::ostream& out) const { return m->display(out, *this); }
        bool operator==(bdd const& other) const { return root == other.root; }
        bool operator!=(bdd const& other) const { return root != other.root; }
        double cnf_size() const { return m->cnf_size(root); }
        double dnf_size() const { return m->dnf_size(root); }
        unsigned bdd_size() const { return m->bdd_size(*this); }
    };

    std::ostream& operator<<(std::ostream& out, bdd const& b);

    class bddv {
        friend bdd_manager;

        vector  m_bits;
        bdd_manager* m;

        bddv(vector const& bits, bdd_manager* m): m_bits(bits), m(m) { SASSERT(m); }
        bddv(vector&& bits, bdd_manager* m): m_bits(std::move(bits)), m(m) { SASSERT(m); }

        bddv(bdd_manager* m): m_bits(), m(m) { SASSERT(m); }
        bdd const& operator[](unsigned i) const { return m_bits[i]; }
        bdd& operator[](unsigned i) { return m_bits[i]; }
        void push_back(bdd const& a) { m_bits.push_back(a); }
        void push_back(bdd&& a) { m_bits.push_back(std::move(a)); }
        void shl();
        void shr();

    public:
        unsigned size() const { return m_bits.size(); }
        vector const& bits() const { return m_bits; }

        /* unsigned comparison operators */
        bdd operator<=(bddv const& other) const { return m->mk_ule(*this, other); }  ///< unsigned comparison
        bdd operator>=(bddv const& other) const { return m->mk_uge(*this, other); }  ///< unsigned comparison
        bdd operator< (bddv const& other) const { return m->mk_ult(*this, other); }  ///< unsigned comparison
        bdd operator> (bddv const& other) const { return m->mk_ugt(*this, other); }  ///< unsigned comparison
        bdd operator<=(rational const& other) const { return m->mk_ule(*this, m->mk_num(other, size())); }  ///< unsigned comparison
        bdd operator>=(rational const& other) const { return m->mk_uge(*this, m->mk_num(other, size())); }  ///< unsigned comparison
        bdd operator< (rational const& other) const { return m->mk_ult(*this, m->mk_num(other, size())); }  ///< unsigned comparison
        bdd operator> (rational const& other) const { return m->mk_ugt(*this, m->mk_num(other, size())); }  ///< unsigned comparison

        /* signed comparison operators */
        bdd sle(bddv const& other) const { return m->mk_sle(*this, other); }
        bdd sge(bddv const& other) const { return m->mk_sge(*this, other); }
        bdd slt(bddv const& other) const { return m->mk_slt(*this, other); }
        bdd sgt(bddv const& other) const { return m->mk_sgt(*this, other); }

        bdd all0() const;        
        bdd all1() const;

        bdd operator==(bddv const& other) const { return m->mk_eq(*this, other); }
        bdd operator==(rational const& other) const { return m->mk_eq(*this, other); }
        bdd operator!=(bddv const& other) const { return !m->mk_eq(*this, other); }
        bdd operator!=(rational const& other) const { return !m->mk_eq(*this, other); }

        bddv operator+(bddv const& other) const { return m->mk_add(*this, other); }
        bddv operator+(rational const& other) const { return m->mk_add(*this, m->mk_num(other, size())); }
        bddv operator-(bddv const& other) const { return m->mk_sub(*this, other); }
        bddv operator-(rational const& other) const { return m->mk_sub(*this, m->mk_num(other, size())); }
        bddv rev_sub(rational const& other) const { return m->mk_sub(m->mk_num(other, size()), *this); }
        bddv operator*(bddv const& other) const { return m->mk_mul(*this, other); }
        bddv operator*(rational const& other) const { return m->mk_mul(*this, other); }
        bddv operator*(bool_vector const& other) const { return m->mk_mul(*this, other); }
        bddv append(bddv const& other) const { return m->mk_concat(*this, other); }
        void quot_rem(bddv const& divisor, bddv& quot, bddv& rem) const { m->mk_quot_rem(*this, divisor, quot, rem); }

        bool is_const() const { return m->is_constv(*this); }
        rational to_val() const { return m->to_val(*this); }
    };

    inline bdd operator<=(rational const& r, bddv const& a) { return a >= r; }  ///< unsigned comparison
    inline bdd operator>=(rational const& r, bddv const& a) { return a <= r; }  ///< unsigned comparison
    inline bdd operator< (rational const& r, bddv const& a) { return a > r; }  ///< unsigned comparison
    inline bdd operator> (rational const& r, bddv const& a) { return a < r; }  ///< unsigned comparison
    inline bdd operator==(rational const& r, bddv const& a) { return a == r; }
    inline bdd operator!=(rational const& r, bddv const& a) { return a != r; }
    inline bddv operator*(rational const& r, bddv const& a) { return a * r; }
    inline bddv operator+(rational const& r, bddv const& a) { return a + r; }
    inline bddv operator-(rational const& r, bddv const& a) { return a.rev_sub(r); }
    inline bdd operator<=(int i, bddv const& a) { return a >= rational(i); }
    inline bdd operator<=(bddv const& a, int i) { return a <= rational(i); }


}






© 2015 - 2024 Weber Informatics LLC | Privacy Policy