All Downloads are FREE. Search and download functionalities are using the official Maven repository.

z3-z3-4.13.0.src.math.dd.dd_fdd.cpp Maven / Gradle / Ivy

The newest version!
/*++
Copyright (c) 2021 Microsoft Corporation

Module Name:

    dd_fdd

Abstract:

    Finite domain abstraction for using BDDs as sets of integers, inspired by BuDDy's fdd module.

Author:

    Nikolaj Bjorner (nbjorner) 2021-04-20
    Jakob Rath 2021-04-20

--*/

#include "math/dd/dd_fdd.h"

namespace dd {

    fdd::fdd(bdd_manager& manager, unsigned_vector&& vars)
        : m_pos2var(std::move(vars))
        , m_var2pos()
        , m(&manager)
        , m_var(manager.mk_var(m_pos2var))
    {
        for (unsigned pos = 0; pos < m_pos2var.size(); ++pos) {
            unsigned const var = m_pos2var[pos];
            while (var >= m_var2pos.size())
                m_var2pos.push_back(UINT_MAX);
            m_var2pos[var] = pos;
        }
    }

    bdd fdd::non_zero() const {
        bdd non_zero = m->mk_false();
        for (unsigned var : m_pos2var) {
            non_zero |= m->mk_var(var);
        }
        return non_zero;
    }

    unsigned fdd::var2pos(unsigned var) const {
        return var < m_var2pos.size() ? m_var2pos[var] : UINT_MAX;
    }

    bool fdd::contains(bdd b, rational const& val) const {
        while (!b.is_const()) {
            unsigned const pos = var2pos(b.var());
            SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
            b = val.get_bit(pos) ? b.hi() : b.lo();
        }
        return b.is_true();
    }

    find_t fdd::find(bdd b, rational& out_val) const {
        return find_hint(b, rational::zero(), out_val);
    }

    find_t fdd::find_hint(bdd b, rational const& hint, rational& out_val) const {
        out_val = 0;
        if (b.is_false())
            return find_t::empty;
        bool is_unique = true;
        bool hint_ok = !hint.is_zero();  // since we choose the 'lo' branch by default, we don't need to check the hint when it is 0.
        unsigned num_vars = 0;
        while (!b.is_true()) {
            ++num_vars;
            unsigned const pos = var2pos(b.var());
            SASSERT(pos != UINT_MAX && "Unexpected BDD variable");

            bool go_hi = false;
            if (b.lo().is_false()) {
                go_hi = true;
                if (hint_ok && !hint.get_bit(pos))
                    hint_ok = false;
            }
            else if (b.hi().is_false()) {
                if (hint_ok && hint.get_bit(pos))
                    hint_ok = false;
            }
            else {
                // This is the only case where we have a choice
                // => follow the hint
                SASSERT(!b.lo().is_false() && !b.hi().is_false());
                is_unique = false;
                if (hint_ok && hint.get_bit(pos))
                    go_hi = true;
            }

            if (go_hi) {
                out_val += rational::power_of_two(pos);
                b = b.hi();
            }
            else
                b = b.lo();
        }
        if (num_vars != num_bits())
            is_unique = false;
        // If a variable corresponding to a 1-bit in hint does not appear in the BDD,
        // out_val is wrong at this point, so we set it explicitly.
        if (hint_ok)
            out_val = hint;
        // TODO: instead of computing out_val incrementally, we could mark the visited 'hi'-positions and only compute out_val from the marks when !hint_ok.
        return is_unique ? find_t::singleton : find_t::multiple;
    }

    std::ostream& operator<<(std::ostream& out, find_t x) {
        switch (x) {
        case find_t::empty:
            return out << "empty";
        case find_t::singleton:
            return out << "singleton";
        case find_t::multiple:
            return out << "multiple";
        }
        UNREACHABLE();
        return out;
    }

    bool fdd::contains(bdd const& x, bool_vector const& value) const {
	bdd b = x;
	while (!b.is_true()) {
	    unsigned const pos = var2pos(b.var());
            SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
	    if (value[pos] && b.hi().is_false())
		return false;
	    if (!value[pos] && b.lo().is_false())
		return false;	    
	    if (value[pos])
		b = b.hi();
	    else
		b = b.lo();
	}
        return true;
    }


    // subtract one from x
    static void dec(bool_vector& x) {
        for (auto& b : x) {
            b = !b;
            if (!b)
                break;
        }
    }

    // add one to x
    static void inc(bool_vector& x) {
        for (auto& b : x) {
            b = !b;
            if (b)
                break;
        }
    }

    static void reset(bool_vector& x, bool value) {
        for (auto& b : x)
            b = value;
    }

  
    bool fdd::sup(bdd const& x, bool_vector& lo) const {
        SASSERT(lo.size() == num_bits());
	//
	// Assumption: common case is that high-order bits are before lower-order bits also
	// after re-ordering. Then co-factoring is relatively cheap.
	//

        if (!contains(x, lo))
            return false;

        //
        // find minimal index where b is false for some 
        // value larger than lo.
        //
        // Let ua(x lo) be shorthand for "unbounded-above" of variable
        // x with bit-string lo.
        // 
        // we have the following identities:
        // ua(_ []) = true
        // ua(x 1 ++ lo) = hi(x) = T or ua(hi(x), lo)
        // ua(x 0 ++ lo) = hi(x) = T and ua(lo(x), lo)
        // 
        // the least significant bit where ua is false
        // represents the position where the smallest number above
        // lo resides that violates x.

        unsigned idx = UINT_MAX;
        vector trail;
        bdd b = x;
        for (unsigned i = lo.size(); i-- > 0; ) {
            trail.push_back(b);
            unsigned v = m_pos2var[i];
            bdd w = m->mk_var(v);
            bdd hi = b.cofactor(w);
            if (lo[i]) {
                if (hi.is_true())
                    break;
                SASSERT(!hi.is_false());
                b = hi;
            }
            else {
                if (!hi.is_true())
                    idx = i;
                b = b.cofactor(m->mk_nvar(v));
            }
        }
        if (idx == UINT_MAX) {
            // all values above lo satisfy x
            reset(lo, true);
            return true;
        }

        SASSERT(!lo[idx]);
        lo[idx] = true;
        unsigned v = m_pos2var[idx];
        b = trail[lo.size() - idx - 1].cofactor(m->mk_var(v));
        for (unsigned i = idx; i-- > 0; ) {
            SASSERT(!b.is_true());
            if (b.is_false()) {
                for (unsigned j = 0; j <= i; ++j)
                    lo[j] = false;
                break;
            }
            lo[i] = b.lo().is_true();
            if (lo[i]) 
                b = b.hi();
            else 
                b = b.lo();
        }

        dec(lo);
        
	    return true;
    }
    
    bool fdd::inf(bdd const& x, bool_vector& hi) const {
        SASSERT(hi.size() == num_bits());
        if (!contains(x, hi))
            return false;

        // Let ub(x hi) be shorthand for "unbounded-below" of variable
        // x with bit-string hi.
        // 
        // we have the following identities:
        // ub(_ []) = true
        // ub(x 0 ++ hi) = lo(x) = T or ub(lo(x), hi)
        // ub(x 1 ++ hi) = lo(x) = T and ub(hi(x), hi)
        // 

        unsigned idx = UINT_MAX;
        vector trail;
        bdd b = x;
        for (unsigned i = hi.size(); i-- > 0; ) {
            trail.push_back(b);
            unsigned v = m_pos2var[i];
            bdd nw = m->mk_nvar(v);
            bdd lo = b.cofactor(nw);
            if (!hi[i]) {
                if (lo.is_true())
                    break;
                SASSERT(!lo.is_false());
                b = lo;
            }
            else {
                if (!lo.is_true())
                    idx = i;
                b = b.cofactor(m->mk_var(v));
            }
        }
        if (idx == UINT_MAX) {
            // all values below hi satisfy x
            reset(hi, false);
            return true;
        }

        SASSERT(hi[idx]);
        hi[idx] = false;
        unsigned v = m_pos2var[idx];
        b = trail[hi.size() - idx - 1].cofactor(m->mk_nvar(v));

        for (unsigned i = idx; i-- > 0; ) {
            SASSERT(!b.is_true());
            if (b.is_false()) {
                for (unsigned j = 0; j <= i; ++j)
                    hi[j] = true;
                break;
            }
            hi[i] = !b.hi().is_true();
            if (!hi[i]) 
                b = b.lo();
            else 
                b = b.hi();
        }

        inc(hi);

        return true;
    }

    bool_vector fdd::rational2bits(rational const& r) const {
        bool_vector result;
        for (unsigned i = 0; i < num_bits(); ++i)
            result.push_back(r.get_bit(i));
        return result;
    }

    rational fdd::bits2rational(bool_vector const& v) const {
        rational result(0);
        for (unsigned i = 0; i < num_bits(); ++i)
            if (v[i])
                result += rational::power_of_two(i);
        return result;
    }

    bool fdd::sup(bdd const& b, rational& _lo) const {
        bool_vector lo = rational2bits(_lo);
        if (!sup(b, lo))
            return false;
        _lo = bits2rational(lo);
        return true;
    }
    
    bool fdd::inf(bdd const& b, rational& _hi) const {
        bool_vector hi = rational2bits(_hi);
        if (!inf(b, hi))
            return false;
        _hi = bits2rational(hi);
        return true;
    }

    rational fdd::max(bdd b) const {
        SASSERT(!b.is_false());
        rational result(0);
        for (unsigned i = num_bits(); i-- > 0; ) {
            unsigned v = m_pos2var[i];
            bdd w = m->mk_var(v);
            bdd hi = b.cofactor(w);
            if (!hi.is_false()) {
                b = hi;
                result += rational::power_of_two(i);
            }
        }
        return result;
    }

    rational fdd::min(bdd b) const {
        SASSERT(!b.is_false());
        rational result(0);
        for (unsigned i = num_bits(); i-- > 0; ) {
            unsigned v = m_pos2var[i];
            bdd nw = m->mk_nvar(v);
            bdd lo = b.cofactor(nw);
            if (lo.is_false())
                result += rational::power_of_two(i);
            else
                b = lo;
        }
        return result;
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy