z3-z3-4.13.0.src.math.interval.interval_def.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
interval_def.h
Abstract:
Goodies/Templates for interval arithmetic
Author:
Leonardo de Moura (leonardo) 2012-07-19.
Revision History:
--*/
#pragma once
#include "math/interval/interval.h"
#include "util/debug.h"
#include "util/trace.h"
#include "util/scoped_numeral.h"
#include "util/common_msgs.h"
#define DEFAULT_PI_PRECISION 2
// #define TRACE_NTH_ROOT
template
interval_manager::interval_manager(reslimit& lim, C && c): m_limit(lim), m_c(std::move(c)) {
m().set(m_minus_one, -1);
m().set(m_one, 1);
m_pi_n = 0;
}
template
interval_manager::~interval_manager() {
del(m_pi_div_2);
del(m_pi);
del(m_3_pi_div_2);
del(m_2_pi);
m().del(m_result_lower);
m().del(m_result_upper);
m().del(m_mul_ad);
m().del(m_mul_bc);
m().del(m_mul_ac);
m().del(m_mul_bd);
m().del(m_minus_one);
m().del(m_one);
m().del(m_inv_k);
}
template
void interval_manager::del(interval & a) {
m().del(lower(a));
m().del(upper(a));
}
template
void interval_manager::checkpoint() {
if (!m_limit.inc())
throw default_exception(Z3_CANCELED_MSG);
}
/*
Compute the n-th root of a with precision p. The result hi - lo <= p
lo and hi are lower/upper bounds for the value of the n-th root of a.
That is, the n-th root is in the interval [lo, hi]
If n is even, then a is assumed to be nonnegative.
If numeral_manager is not precise, the procedure does not guarantee the precision p.
*/
template
void interval_manager::nth_root_slow(numeral const & a, unsigned n, numeral const & p, numeral & lo, numeral & hi) {
#ifdef TRACE_NTH_ROOT
static unsigned counter = 0;
static unsigned loop_counter = 0;
counter++;
if (counter % 1000 == 0)
std::cerr << "[nth-root] " << counter << " " << loop_counter << " " << ((double)loop_counter)/((double)counter) << std::endl;
#endif
bool n_is_even = (n % 2 == 0);
SASSERT(!n_is_even || m().is_nonneg(a));
if (m().is_zero(a) || m().is_one(a) || (!n_is_even && m().eq(a, m_minus_one))) {
m().set(lo, a);
m().set(hi, a);
return;
}
if (m().lt(a, m_minus_one)) {
m().set(lo, a);
m().set(hi, -1);
}
else if (m().is_neg(a)) {
m().set(lo, -1);
m().set(hi, 0);
}
else if (m().lt(a, m_one)) {
m().set(lo, 0);
m().set(hi, 1);
}
else {
m().set(lo, 1);
m().set(hi, a);
}
SASSERT(m().le(lo, hi));
_scoped_numeral c(m()), cn(m());
_scoped_numeral two(m());
m().set(two, 2);
while (true) {
checkpoint();
#ifdef TRACE_NTH_ROOT
loop_counter++;
#endif
m().add(hi, lo, c);
m().div(c, two, c);
if (m().precise()) {
m().power(c, n, cn);
if (m().gt(cn, a)) {
m().set(hi, c);
}
else if (m().eq(cn, a)) {
// root is precise
m().set(lo, c);
m().set(hi, c);
return;
}
else {
m().set(lo, c);
}
}
else {
round_to_minus_inf();
m().power(c, n, cn);
if (m().gt(cn, a)) {
m().set(hi, c);
}
else {
round_to_plus_inf();
m().power(c, n, cn);
if (m().lt(cn, a)) {
m().set(lo, c);
}
else {
// can't improve, numeral_manager is not precise enough,
// a is between round-to-minus-inf(c^n) and round-to-plus-inf(c^n)
return;
}
}
}
round_to_plus_inf();
m().sub(hi, lo, c);
if (m().le(c, p))
return; // result is precise enough
}
}
/**
\brief Store in o a rough approximation of a^1/n.
It uses 2^Floor[Floor(Log2(a))/n]
\pre is_pos(a)
*/
template
void interval_manager::rough_approx_nth_root(numeral const & a, unsigned n, numeral & o) {
SASSERT(m().is_pos(a));
SASSERT(n > 0);
round_to_minus_inf();
unsigned k = m().prev_power_of_two(a);
m().set(o, 2);
m().power(o, k/n, o);
}
/*
Compute the n-th root of \c a with (suggested) precision p.
The only guarantee provided by this method is that a^(1/n) is in [lo, hi].
If n is even, then a is assumed to be nonnegative.
*/
template
void interval_manager::nth_root(numeral const & a, unsigned n, numeral const & p, numeral & lo, numeral & hi) {
// nth_root_slow(a, n, p, lo, hi);
// return;
SASSERT(n > 0);
SASSERT(n % 2 != 0 || m().is_nonneg(a));
if (n == 1 || m().is_zero(a) || m().is_one(a) || m().is_minus_one(a)) {
// easy cases: 1, -1, 0
m().set(lo, a);
m().set(hi, a);
return;
}
bool is_neg = m().is_neg(a);
_scoped_numeral A(m());
m().set(A, a);
m().abs(A);
nth_root_pos(A, n, p, lo, hi);
STRACE("nth_root_trace",
tout << "[nth-root] ("; m().display(tout, A); tout << ")^(1/" << n << ") >= "; m().display(tout, lo); tout << "\n";
tout << "[nth-root] ("; m().display(tout, A); tout << ")^(1/" << n << ") <= "; m().display(tout, hi); tout << "\n";);
if (is_neg) {
m().swap(lo, hi);
m().neg(lo);
m().neg(hi);
}
}
/**
r <- A/(x^n)
If to_plus_inf, then r >= A/(x^n)
If not to_plus_inf, then r <= A/(x^n)
*/
template
void interval_manager::A_div_x_n(numeral const & A, numeral const & x, unsigned n, bool to_plus_inf, numeral & r) {
if (n == 1) {
if (m().precise()) {
m().div(A, x, r);
}
else {
set_rounding(to_plus_inf);
m().div(A, x, r);
}
}
else {
if (m().precise()) {
m().power(x, n, r);
m().div(A, r, r);
}
else {
set_rounding(!to_plus_inf);
m().power(x, n, r);
set_rounding(to_plus_inf);
m().div(A, r, r);
}
}
}
/**
\brief Compute an approximation of A^(1/n) using the sequence
x' = 1/n((n-1)*x + A/(x^(n-1)))
The computation stops when the difference between current and new x is less than p.
The procedure may not terminate if m() is not precise and p is very small.
*/
template
void interval_manager::approx_nth_root(numeral const & A, unsigned n, numeral const & p, numeral & x) {
SASSERT(m().is_pos(A));
SASSERT(n > 1);
#ifdef TRACE_NTH_ROOT
static unsigned counter = 0;
static unsigned loop_counter = 0;
counter++;
if (counter % 1000 == 0)
std::cerr << "[nth-root] " << counter << " " << loop_counter << " " << ((double)loop_counter)/((double)counter) << std::endl;
#endif
_scoped_numeral x_prime(m()), d(m());
m().set(d, 1);
if (m().lt(A, d))
m().set(x, A);
else
rough_approx_nth_root(A, n, x);
round_to_minus_inf();
if (n == 2) {
_scoped_numeral two(m());
m().set(two, 2);
while (true) {
checkpoint();
#ifdef TRACE_NTH_ROOT
loop_counter++;
#endif
m().div(A, x, x_prime);
m().add(x, x_prime, x_prime);
m().div(x_prime, two, x_prime);
m().sub(x_prime, x, d);
m().abs(d);
m().swap(x, x_prime);
if (m().lt(d, p))
return;
}
}
else {
_scoped_numeral _n(m()), _n_1(m());
m().set(_n, n); // _n contains n
m().set(_n_1, n);
m().dec(_n_1); // _n_1 contains n-1
while (true) {
checkpoint();
#ifdef TRACE_NTH_ROOT
loop_counter++;
#endif
m().power(x, n-1, x_prime);
m().div(A, x_prime, x_prime);
m().mul(_n_1, x, d);
m().add(d, x_prime, x_prime);
m().div(x_prime, _n, x_prime);
m().sub(x_prime, x, d);
m().abs(d);
TRACE("nth_root",
tout << "A: "; m().display(tout, A); tout << "\n";
tout << "x: "; m().display(tout, x); tout << "\n";
tout << "x_prime: "; m().display(tout, x_prime); tout << "\n";
tout << "d: "; m().display(tout, d); tout << "\n";
);
m().swap(x, x_prime);
if (m().lt(d, p))
return;
}
}
}
template
void interval_manager::nth_root_pos(numeral const & A, unsigned n, numeral const & p, numeral & lo, numeral & hi) {
approx_nth_root(A, n, p, hi);
if (m().precise()) {
// Assuming hi has a upper bound for A^(n-1)
// Then, A/(x^(n-1)) must be lower bound
A_div_x_n(A, hi, n-1, false, lo);
// Check if we were wrong
if (m().lt(hi, lo)) {
// swap if wrong
m().swap(lo, hi);
}
}
else {
// Check if hi is really a upper bound for A^(n-1)
A_div_x_n(A, hi, n-1, true /* lo will be greater than the actual lower bound */, lo);
TRACE("nth_root_bug",
tout << "Assuming upper\n";
tout << "A: "; m().display(tout, A); tout << "\n";
tout << "hi: "; m().display(tout, hi); tout << "\n";
tout << "lo: "; m().display(tout, hi); tout << "\n";);
if (m().le(lo, hi)) {
// hi is really the upper bound
// Must compute lo again but approximating to -oo
A_div_x_n(A, hi, n-1, false, lo);
}
else {
// hi should be lower bound
m().swap(lo, hi);
// check if lo is lower bound
A_div_x_n(A, lo, n-1, false /* hi will less than the actual upper bound */, hi);
if (m().le(lo, hi)) {
// lo is really the lower bound
// Must compute hi again but approximating to +oo
A_div_x_n(A, lo, n-1, true, hi);
}
else {
// we don't have anything due to rounding errors
// Be supper conservative
// This should not really happen very often.
_scoped_numeral one(m());
if (m().lt(A, one)) {
m().set(lo, 0);
m().set(hi, 1);
}
else {
m().set(lo, 1);
m().set(hi, A);
}
}
}
}
}
/**
\brief o <- n!
*/
template
void interval_manager::fact(unsigned n, numeral & o) {
_scoped_numeral aux(m());
m().set(o, 1);
for (unsigned i = 2; i <= n; i++) {
m().set(aux, static_cast(i));
m().mul(aux, o, o);
TRACE("fact_bug", tout << "i: " << i << ", o: " << m().to_rational_string(o) << "\n";);
}
}
template
void interval_manager::sine_series(numeral const & a, unsigned k, bool upper, numeral & o) {
SASSERT(k % 2 == 1);
// Compute sine using taylor series up to k
// x - x^3/3! + x^5/5! - x^7/7! + ...
// The result should be greater than or equal to the actual value if upper == true
// Otherwise it must be less than or equal to the actual value.
// The argument upper only matter if the numeral_manager is not precise.
// Taylor series up to k with rounding to
_scoped_numeral f(m());
_scoped_numeral aux(m());
m().set(o, a);
bool sign = true;
bool upper_factor = !upper; // since the first sign is negative, we must minimize factor to maximize result
for (unsigned i = 3; i <= k; i+=2) {
TRACE("sine_bug", tout << "[begin-loop] o: " << m().to_rational_string(o) << "\ni: " << i << "\n";
tout << "upper: " << upper << ", upper_factor: " << upper_factor << "\n";
tout << "o (default): " << m().to_string(o) << "\n";);
set_rounding(upper_factor);
m().power(a, i, f);
TRACE("sine_bug", tout << "a^i " << m().to_rational_string(f) << "\n";);
set_rounding(!upper_factor);
fact(i, aux);
TRACE("sine_bug", tout << "i! " << m().to_rational_string(aux) << "\n";);
set_rounding(upper_factor);
m().div(f, aux, f);
TRACE("sine_bug", tout << "a^i/i! " << m().to_rational_string(f) << "\n";);
set_rounding(upper);
if (sign)
m().sub(o, f, o);
else
m().add(o, f, o);
TRACE("sine_bug", tout << "o: " << m().to_rational_string(o) << "\n";);
sign = !sign;
upper_factor = !upper_factor;
}
}
template
void interval_manager::sine(numeral const & a, unsigned k, numeral & lo, numeral & hi) {
TRACE("sine", tout << "sine(a), a: " << m().to_rational_string(a) << "\na: " << m().to_string(a) << "\n";);
SASSERT(&lo != &hi);
if (m().is_zero(a)) {
m().reset(lo);
m().reset(hi);
return;
}
// Compute sine using taylor series
// x - x^3/3! + x^5/5! - x^7/7! + ...
//
// Note that, the coefficient of even terms is 0.
// So, we force k to be odd to make sure the error is minimized.
if (k % 2 == 0)
k++;
// Taylor series error = |x|^(k+1)/(k+1)!
_scoped_numeral error(m());
_scoped_numeral aux(m());
round_to_plus_inf();
m().set(error, a);
if (m().is_neg(error))
m().neg(error);
m().power(error, k+1, error);
TRACE("sine", tout << "a^(k+1): " << m().to_rational_string(error) << "\nk : " << k << "\n";);
round_to_minus_inf();
fact(k+1, aux);
TRACE("sine", tout << "(k+1)!: " << m().to_rational_string(aux) << "\n";);
round_to_plus_inf();
m().div(error, aux, error);
TRACE("sine", tout << "error: " << m().to_rational_string(error) << "\n";);
// Taylor series up to k with rounding to -oo
sine_series(a, k, false, lo);
if (m().precise()) {
m().set(hi, lo);
m().sub(lo, error, lo);
if (m().lt(lo, m_minus_one)) {
m().set(lo, -1);
m().set(hi, 1);
}
else {
m().add(hi, error, hi);
}
}
else {
// We must recompute the series with rounding to +oo
TRACE("sine", tout << "lo before -error: " << m().to_rational_string(lo) << "\n";);
round_to_minus_inf();
m().sub(lo, error, lo);
TRACE("sine", tout << "lo: " << m().to_rational_string(lo) << "\n";);
if (m().lt(lo, m_minus_one)) {
m().set(lo, -1);
m().set(hi, 1);
return;
}
sine_series(a, k, true, hi);
round_to_plus_inf();
m().add(hi, error, hi);
TRACE("sine", tout << "hi: " << m().to_rational_string(hi) << "\n";);
}
}
template
void interval_manager::cosine_series(numeral const & a, unsigned k, bool upper, numeral & o) {
SASSERT(k % 2 == 0);
// Compute cosine using taylor series up to k
// 1 - x^2/2! + x^4/4! - x^6/6! + ...
// The result should be greater than or equal to the actual value if upper == true
// Otherwise it must be less than or equal to the actual value.
// The argument upper only matter if the numeral_manager is not precise.
// Taylor series up to k with rounding to -oo
_scoped_numeral f(m());
_scoped_numeral aux(m());
m().set(o, 1);
bool sign = true;
bool upper_factor = !upper; // since the first sign is negative, we must minimize factor to maximize result
for (unsigned i = 2; i <= k; i+=2) {
set_rounding(upper_factor);
m().power(a, i, f);
set_rounding(!upper_factor);
fact(i, aux);
set_rounding(upper_factor);
m().div(f, aux, f);
set_rounding(upper);
if (sign)
m().sub(o, f, o);
else
m().add(o, f, o);
sign = !sign;
upper_factor = !upper_factor;
}
}
template
void interval_manager::cosine(numeral const & a, unsigned k, numeral & lo, numeral & hi) {
TRACE("cosine", tout << "cosine(a): "; m().display_decimal(tout, a, 32); tout << "\n";);
SASSERT(&lo != &hi);
if (m().is_zero(a)) {
m().set(lo, 1);
m().set(hi, 1);
return;
}
// Compute cosine using taylor series
// 1 - x^2/2! + x^4/4! - x^6/6! + ...
//
// Note that, the coefficient of odd terms is 0.
// So, we force k to be even to make sure the error is minimized.
if (k % 2 == 1)
k++;
// Taylor series error = |x|^(k+1)/(k+1)!
_scoped_numeral error(m());
_scoped_numeral aux(m());
round_to_plus_inf();
m().set(error, a);
if (m().is_neg(error))
m().neg(error);
m().power(error, k+1, error);
round_to_minus_inf();
fact(k+1, aux);
round_to_plus_inf();
m().div(error, aux, error);
TRACE("sine", tout << "error: "; m().display_decimal(tout, error, 32); tout << "\n";);
// Taylor series up to k with rounding to -oo
cosine_series(a, k, false, lo);
if (m().precise()) {
m().set(hi, lo);
m().sub(lo, error, lo);
if (m().lt(lo, m_minus_one)) {
m().set(lo, -1);
m().set(hi, 1);
}
else {
m().add(hi, error, hi);
}
}
else {
// We must recompute the series with rounding to +oo
round_to_minus_inf();
m().sub(lo, error, lo);
if (m().lt(lo, m_minus_one)) {
m().set(lo, -1);
m().set(hi, 1);
return;
}
cosine_series(a, k, true, hi);
round_to_plus_inf();
m().add(hi, error, hi);
}
}
template
void interval_manager::reset_lower(interval & a) {
m().reset(lower(a));
set_lower_is_open(a, true);
set_lower_is_inf(a, true);
}
template
void interval_manager::reset_upper(interval & a) {
m().reset(upper(a));
set_upper_is_open(a, true);
set_upper_is_inf(a, true);
}
template
void interval_manager::reset(interval & a) {
reset_lower(a);
reset_upper(a);
}
template
bool interval_manager::contains_zero(interval const & n) const {
return
(lower_is_neg(n) || (lower_is_zero(n) && !lower_is_open(n))) &&
(upper_is_pos(n) || (upper_is_zero(n) && !upper_is_open(n)));
}
template
bool interval_manager::contains(interval const & n, numeral const & v) const {
if (!lower_is_inf(n)) {
if (m().lt(v, lower(n))) return false;
if (m().eq(v, lower(n)) && lower_is_open(n)) return false;
}
if (!upper_is_inf(n)) {
if (m().gt(v, upper(n))) return false;
if (m().eq(v, upper(n)) && upper_is_open(n)) return false;
}
return true;
}
template
void interval_manager::display(std::ostream & out, interval const & n) const {
out << (lower_is_open(n) ? "(" : "[");
::display(out, m(), lower(n), lower_kind(n));
out << ", ";
::display(out, m(), upper(n), upper_kind(n));
out << (upper_is_open(n) ? ")" : "]");
}
template
void interval_manager::display_pp(std::ostream & out, interval const & n) const {
out << (lower_is_open(n) ? "(" : "[");
::display_pp(out, m(), lower(n), lower_kind(n));
out << ", ";
::display_pp(out, m(), upper(n), upper_kind(n));
out << (upper_is_open(n) ? ")" : "]");
}
template
bool interval_manager::check_invariant(interval const & n) const {
if (::eq(m(), lower(n), lower_kind(n), upper(n), upper_kind(n))) {
SASSERT(!lower_is_open(n));
SASSERT(!upper_is_open(n));
}
else {
SASSERT(lt(m(), lower(n), lower_kind(n), upper(n), upper_kind(n)));
}
return true;
}
template
void interval_manager::set(interval & t, interval const & s) {
if (&t == &const_cast(s))
return;
if (lower_is_inf(s)) {
set_lower_is_inf(t, true);
}
else {
m().set(lower(t), lower(s));
set_lower_is_inf(t, false);
}
if (upper_is_inf(s)) {
set_upper_is_inf(t, true);
}
else {
m().set(upper(t), upper(s));
set_upper_is_inf(t, false);
}
set_lower_is_open(t, lower_is_open(s));
set_upper_is_open(t, upper_is_open(s));
SASSERT(is_empty(t) || check_invariant(t));
}
template
void interval_manager::set(interval & t, numeral const& n) {
m().set(lower(t), n);
set_lower_is_inf(t, false);
m().set(upper(t), n);
set_upper_is_inf(t, false);
set_lower_is_open(t, false);
set_upper_is_open(t, false);
SASSERT(check_invariant(t));
}
template
bool interval_manager::eq(interval const & a, interval const & b) const {
return
::eq(m(), lower(a), lower_kind(a), lower(b), lower_kind(b)) &&
::eq(m(), upper(a), upper_kind(a), upper(b), upper_kind(b)) &&
lower_is_open(a) == lower_is_open(b) &&
upper_is_open(a) == upper_is_open(b);
}
template
bool interval_manager::before(interval const & a, interval const & b) const {
if (upper_is_inf(a) || lower_is_inf(b))
return false;
return m().lt(upper(a), lower(b)) || (upper_is_open(a) && m().eq(upper(a), lower(b)));
}
template
void interval_manager::neg_jst(interval const & a, interval_deps_combine_rule & b_deps) {
if (lower_is_inf(a)) {
if (upper_is_inf(a)) {
b_deps.m_lower_combine = 0;
b_deps.m_upper_combine = 0;
}
else {
b_deps.m_lower_combine = DEP_IN_UPPER1;
b_deps.m_upper_combine = 0;
}
}
else {
if (upper_is_inf(a)) {
b_deps.m_lower_combine = 0;
b_deps.m_upper_combine = DEP_IN_LOWER1;
}
else {
b_deps.m_lower_combine = DEP_IN_UPPER1;
b_deps.m_upper_combine = DEP_IN_LOWER1;
}
}
}
template
void interval_manager::neg(interval const & a, interval & b, interval_deps_combine_rule & b_deps) {
neg_jst(a, b_deps);
neg(a, b);
}
template
void interval_manager::neg(interval const & a, interval & b) {
if (lower_is_inf(a)) {
if (upper_is_inf(a)) {
reset(b);
}
else {
m().set(lower(b), upper(a));
m().neg(lower(b));
set_lower_is_inf(b, false);
set_lower_is_open(b, upper_is_open(a));
m().reset(upper(b));
set_upper_is_inf(b, true);
set_upper_is_open(b, true);
}
}
else {
if (upper_is_inf(a)) {
m().set(upper(b), lower(a));
m().neg(upper(b));
set_upper_is_inf(b, false);
set_upper_is_open(b, lower_is_open(a));
m().reset(lower(b));
set_lower_is_inf(b, true);
set_lower_is_open(b, true);
}
else {
if (&a == &b) {
m().swap(lower(b), upper(b));
}
else {
m().set(lower(b), upper(a));
m().set(upper(b), lower(a));
}
m().neg(lower(b));
m().neg(upper(b));
set_lower_is_inf(b, false);
set_upper_is_inf(b, false);
bool l_o = lower_is_open(a);
bool u_o = upper_is_open(a);
set_lower_is_open(b, u_o);
set_upper_is_open(b, l_o);
}
}
SASSERT(check_invariant(b));
}
template
void interval_manager::add_jst(interval const & a, interval const & b, interval_deps_combine_rule & c_deps) {
c_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2;
c_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2;
}
template
void interval_manager::add(interval const & a, interval const & b, interval & c, interval_deps_combine_rule & c_deps) {
add_jst(a, b, c_deps);
add(a, b, c);
}
template
void interval_manager::add(interval const & a, interval const & b, interval & c) {
ext_numeral_kind new_l_kind, new_u_kind;
round_to_minus_inf();
::add(m(), lower(a), lower_kind(a), lower(b), lower_kind(b), lower(c), new_l_kind);
round_to_plus_inf();
::add(m(), upper(a), upper_kind(a), upper(b), upper_kind(b), upper(c), new_u_kind);
set_lower_is_inf(c, new_l_kind == EN_MINUS_INFINITY);
set_upper_is_inf(c, new_u_kind == EN_PLUS_INFINITY);
set_lower_is_open(c, lower_is_open(a) || lower_is_open(b));
set_upper_is_open(c, upper_is_open(a) || upper_is_open(b));
SASSERT(is_empty(a) || is_empty(b) || check_invariant(c));
}
template
void interval_manager::sub_jst(interval const & a, interval const & b, interval_deps_combine_rule & c_deps) {
c_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2;
c_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2;
}
template
void interval_manager::sub(interval const & a, interval const & b, interval & c, interval_deps_combine_rule & c_deps) {
sub_jst(a, b, c_deps);
sub(a, b, c);
}
template
void interval_manager::sub(interval const & a, interval const & b, interval & c) {
ext_numeral_kind new_l_kind, new_u_kind;
round_to_minus_inf();
::sub(m(), lower(a), lower_kind(a), upper(b), upper_kind(b), lower(c), new_l_kind);
round_to_plus_inf();
::sub(m(), upper(a), upper_kind(a), lower(b), lower_kind(b), upper(c), new_u_kind);
set_lower_is_inf(c, new_l_kind == EN_MINUS_INFINITY);
set_upper_is_inf(c, new_u_kind == EN_PLUS_INFINITY);
set_lower_is_open(c, lower_is_open(a) || upper_is_open(b));
set_upper_is_open(c, upper_is_open(a) || lower_is_open(b));
SASSERT(check_invariant(c));
}
template
void interval_manager::mul_jst(numeral const & k, interval const & a, interval_deps_combine_rule & b_deps) {
if (m().is_zero(k)) {
b_deps.m_lower_combine = 0;
b_deps.m_upper_combine = 0;
}
else if (m().is_neg(k)) {
b_deps.m_lower_combine = DEP_IN_UPPER1;
b_deps.m_upper_combine = DEP_IN_LOWER1;
}
else {
b_deps.m_lower_combine = DEP_IN_LOWER1;
b_deps.m_upper_combine = DEP_IN_UPPER1;
}
}
template
void interval_manager::div_mul(numeral const & k, interval const & a, interval & b, bool inv_k) {
if (m().is_zero(k)) {
reset(b);
}
else {
numeral const & l = lower(a); ext_numeral_kind l_k = lower_kind(a);
numeral const & u = upper(a); ext_numeral_kind u_k = upper_kind(a);
numeral & new_l_val = m_result_lower;
numeral & new_u_val = m_result_upper;
ext_numeral_kind new_l_kind, new_u_kind;
bool l_o = lower_is_open(a);
bool u_o = upper_is_open(a);
if (m().is_pos(k)) {
set_lower_is_open(b, l_o);
set_upper_is_open(b, u_o);
if (inv_k) {
round_to_minus_inf();
m().inv(k, m_inv_k);
::mul(m(), l, l_k, m_inv_k, EN_NUMERAL, new_l_val, new_l_kind);
round_to_plus_inf();
m().inv(k, m_inv_k);
::mul(m(), u, u_k, m_inv_k, EN_NUMERAL, new_u_val, new_u_kind);
}
else {
round_to_minus_inf();
::mul(m(), l, l_k, k, EN_NUMERAL, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), u, u_k, k, EN_NUMERAL, new_u_val, new_u_kind);
}
}
else {
set_lower_is_open(b, u_o);
set_upper_is_open(b, l_o);
if (inv_k) {
round_to_minus_inf();
m().inv(k, m_inv_k);
::mul(m(), u, u_k, m_inv_k, EN_NUMERAL, new_l_val, new_l_kind);
round_to_plus_inf();
m().inv(k, m_inv_k);
::mul(m(), l, l_k, m_inv_k, EN_NUMERAL, new_u_val, new_u_kind);
}
else {
round_to_minus_inf();
::mul(m(), u, u_k, k, EN_NUMERAL, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), l, l_k, k, EN_NUMERAL, new_u_val, new_u_kind);
}
}
m().swap(lower(b), new_l_val);
m().swap(upper(b), new_u_val);
set_lower_is_inf(b, new_l_kind == EN_MINUS_INFINITY);
set_upper_is_inf(b, new_u_kind == EN_PLUS_INFINITY);
}
}
template
void interval_manager::mul(numeral const & k, interval const & a, interval & b, interval_deps_combine_rule & b_deps) {
mul_jst(k, a, b_deps);
mul(k, a, b);
}
template
void interval_manager::mul(int n, int d, interval const & a, interval & b) {
_scoped_numeral aux(m());
m().set(aux, n, d);
mul(aux, a, b);
}
template
void interval_manager::div(interval const & a, numeral const & k, interval & b, interval_deps_combine_rule & b_deps) {
div_jst(a, k, b_deps);
div(a, k, b);
}
template
void interval_manager::mul_jst(interval const & i1, interval const & i2, interval_deps_combine_rule & r_deps) {
if (is_zero(i1)) {
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
}
else if (is_zero(i2)) {
r_deps.m_lower_combine = DEP_IN_LOWER2 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER2 | DEP_IN_UPPER2;
}
else if (is_N(i1)) {
if (is_N(i2)) {
// x <= b <= 0, y <= d <= 0 --> b*d <= x*y
// a <= x <= b <= 0, c <= y <= d <= 0 --> x*y <= a*c (we can use the fact that x or y is always negative (i.e., b is neg or d is neg))
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2 | DEP_IN_UPPER1; // we can replace DEP_IN_UPPER1 with DEP_IN_UPPER2
}
else if (is_M(i2)) {
// a <= x <= b <= 0, y <= d, d > 0 --> a*d <= x*y (uses the fact that b is not positive)
// a <= x <= b <= 0, c <= y, c < 0 --> x*y <= a*c (uses the fact that b is not positive)
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2 | DEP_IN_UPPER1;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2 | DEP_IN_UPPER1;
}
else {
// a <= x <= b <= 0, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that x is neg (b is not positive) or y is pos (c is not negative))
// x <= b <= 0, 0 <= c <= y --> x*y <= b*c
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2 | DEP_IN_UPPER1; // we can replace DEP_IN_UPPER1 with DEP_IN_UPPER2
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2;
}
}
else if (is_M(i1)) {
if (is_N(i2)) {
// b > 0, x <= b, c <= y <= d <= 0 --> b*c <= x*y (uses the fact that d is not positive)
// a < 0, a <= x, c <= y <= d <= 0 --> x*y <= a*c (uses the fact that d is not positive)
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
}
else if (is_M(i2)) {
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
}
else {
// a < 0, a <= x, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that c is not negative)
// b > 0, x <= b, 0 <= c <= y <= d --> x*y <= b*d (uses the fact that c is not negative)
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2 | DEP_IN_LOWER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2 | DEP_IN_LOWER2;
}
}
else {
SASSERT(is_P(i1));
if (is_N(i2)) {
// 0 <= a <= x <= b, c <= y <= d <= 0 --> x*y <= b*c (uses the fact that x is pos (a is not neg) or y is neg (d is not pos))
// 0 <= a <= x, y <= d <= 0 --> a*d <= x*y
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_LOWER1; // we can replace DEP_IN_LOWER1 with DEP_IN_UPPER2
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2;
}
else if (is_M(i2)) {
// 0 <= a <= x <= b, c <= y --> b*c <= x*y (uses the fact that a is not negative)
// 0 <= a <= x <= b, y <= d --> x*y <= b*d (uses the fact that a is not negative)
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_LOWER1;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2 | DEP_IN_LOWER1;
}
else {
SASSERT(is_P(i2));
// 0 <= a <= x, 0 <= c <= y --> a*c <= x*y
// x <= b, y <= d --> x*y <= b*d (uses the fact that x is pos (a is not negative) or y is pos (c is not negative))
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2 | DEP_IN_LOWER1; // we can replace DEP_IN_LOWER1 with DEP_IN_LOWER2
}
}
}
template
void interval_manager::mul(interval const & i1, interval const & i2, interval & r, interval_deps_combine_rule & r_deps) {
mul_jst(i1, i2, r_deps);
mul(i1, i2, r);
}
template
void interval_manager::mul(interval const & i1, interval const & i2, interval & r) {
#ifdef _TRACE
static unsigned call_id = 0;
#endif
#if Z3DEBUG
bool i1_contains_zero = contains_zero(i1);
bool i2_contains_zero = contains_zero(i2);
#endif
if (is_zero(i1)) {
set(r, i1);
return;
}
if (is_zero(i2)) {
set(r, i2);
return;
}
numeral const & a = lower(i1); ext_numeral_kind a_k = lower_kind(i1);
numeral const & b = upper(i1); ext_numeral_kind b_k = upper_kind(i1);
numeral const & c = lower(i2); ext_numeral_kind c_k = lower_kind(i2);
numeral const & d = upper(i2); ext_numeral_kind d_k = upper_kind(i2);
bool a_o = lower_is_open(i1);
bool b_o = upper_is_open(i1);
bool c_o = lower_is_open(i2);
bool d_o = upper_is_open(i2);
numeral & new_l_val = m_result_lower;
numeral & new_u_val = m_result_upper;
ext_numeral_kind new_l_kind, new_u_kind;
if (is_N(i1)) {
if (is_N(i2)) {
// x <= b <= 0, y <= d <= 0 --> b*d <= x*y
// a <= x <= b <= 0, c <= y <= d <= 0 --> x*y <= a*c (we can use the fact that x or y is always negative (i.e., b is neg or d is neg))
TRACE("interval_bug", tout << "(N, N) #" << call_id << "\n"; display(tout, i1); tout << "\n"; display(tout, i2); tout << "\n";
tout << "a: "; m().display(tout, a); tout << "\n";
tout << "b: "; m().display(tout, b); tout << "\n";
tout << "c: "; m().display(tout, c); tout << "\n";
tout << "d: "; m().display(tout, d); tout << "\n";
tout << "is_N0(i1): " << is_N0(i1) << "\n";
tout << "is_N0(i2): " << is_N0(i2) << "\n";
);
set_lower_is_open(r, (is_N0(i1) || is_N0(i2)) ? false : (b_o || d_o));
set_upper_is_open(r, a_o || c_o);
// if b = 0 (and the interval is closed), then the lower bound is closed
round_to_minus_inf();
::mul(m(), b, b_k, d, d_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), a, a_k, c, c_k, new_u_val, new_u_kind);
}
else if (is_M(i2)) {
// a <= x <= b <= 0, y <= d, d > 0 --> a*d <= x*y (uses the fact that b is not positive)
// a <= x <= b <= 0, c <= y, c < 0 --> x*y <= a*c (uses the fact that b is not positive)
TRACE("interval_bug", tout << "(N, M) #" << call_id << "\n";);
set_lower_is_open(r, a_o || d_o);
set_upper_is_open(r, a_o || c_o);
round_to_minus_inf();
::mul(m(), a, a_k, d, d_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), a, a_k, c, c_k, new_u_val, new_u_kind);
}
else {
// a <= x <= b <= 0, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that x is neg (b is not positive) or y is pos (c is not negative))
// x <= b <= 0, 0 <= c <= y --> x*y <= b*c
TRACE("interval_bug", tout << "(N, P) #" << call_id << "\n";);
SASSERT(is_P(i2));
// must update upper_is_open first, since value of is_N0(i1) and is_P0(i2) may be affected by update
set_upper_is_open(r, (is_N0(i1) || is_P0(i2)) ? false : (b_o || c_o));
set_lower_is_open(r, a_o || d_o);
round_to_minus_inf();
::mul(m(), a, a_k, d, d_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), b, b_k, c, c_k, new_u_val, new_u_kind);
}
}
else if (is_M(i1)) {
if (is_N(i2)) {
// b > 0, x <= b, c <= y <= d <= 0 --> b*c <= x*y (uses the fact that d is not positive)
// a < 0, a <= x, c <= y <= d <= 0 --> x*y <= a*c (uses the fact that d is not positive)
TRACE("interval_bug", tout << "(M, N) #" << call_id << "\n";);
set_lower_is_open(r, b_o || c_o);
set_upper_is_open(r, a_o || c_o);
round_to_minus_inf();
::mul(m(), b, b_k, c, c_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), a, a_k, c, c_k, new_u_val, new_u_kind);
}
else if (is_M(i2)) {
numeral & ad = m_mul_ad; ext_numeral_kind ad_k;
numeral & bc = m_mul_bc; ext_numeral_kind bc_k;
numeral & ac = m_mul_ac; ext_numeral_kind ac_k;
numeral & bd = m_mul_bd; ext_numeral_kind bd_k;
bool ad_o = a_o || d_o;
bool bc_o = b_o || c_o;
bool ac_o = a_o || c_o;
bool bd_o = b_o || d_o;
round_to_minus_inf();
::mul(m(), a, a_k, d, d_k, ad, ad_k);
::mul(m(), b, b_k, c, c_k, bc, bc_k);
round_to_plus_inf();
::mul(m(), a, a_k, c, c_k, ac, ac_k);
::mul(m(), b, b_k, d, d_k, bd, bd_k);
if (::lt(m(), ad, ad_k, bc, bc_k) || (::eq(m(), ad, ad_k, bc, bc_k) && !ad_o && bc_o)) {
m().swap(new_l_val, ad);
new_l_kind = ad_k;
set_lower_is_open(r, ad_o);
}
else {
m().swap(new_l_val, bc);
new_l_kind = bc_k;
set_lower_is_open(r, bc_o);
}
if (::gt(m(), ac, ac_k, bd, bd_k) || (::eq(m(), ac, ac_k, bd, bd_k) && !ac_o && bd_o)) {
m().swap(new_u_val, ac);
new_u_kind = ac_k;
set_upper_is_open(r, ac_o);
}
else {
m().swap(new_u_val, bd);
new_u_kind = bd_k;
set_upper_is_open(r, bd_o);
}
}
else {
// a < 0, a <= x, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that c is not negative)
// b > 0, x <= b, 0 <= c <= y <= d --> x*y <= b*d (uses the fact that c is not negative)
TRACE("interval_bug", tout << "(M, P) #" << call_id << "\n";);
SASSERT(is_P(i2));
set_lower_is_open(r, a_o || d_o);
set_upper_is_open(r, b_o || d_o);
round_to_minus_inf();
::mul(m(), a, a_k, d, d_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), b, b_k, d, d_k, new_u_val, new_u_kind);
}
}
else {
SASSERT(is_P(i1));
if (is_N(i2)) {
// 0 <= a <= x <= b, c <= y <= d <= 0 --> x*y <= b*c (uses the fact that x is pos (a is not neg) or y is neg (d is not pos))
// 0 <= a <= x, y <= d <= 0 --> a*d <= x*y
TRACE("interval_bug", tout << "(P, N) #" << call_id << "\n";);
// must update upper_is_open first, since value of is_P0(i1) and is_N0(i2) may be affected by update
set_upper_is_open(r, (is_P0(i1) || is_N0(i2)) ? false : a_o || d_o);
set_lower_is_open(r, b_o || c_o);
round_to_minus_inf();
::mul(m(), b, b_k, c, c_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), a, a_k, d, d_k, new_u_val, new_u_kind);
}
else if (is_M(i2)) {
// 0 <= a <= x <= b, c <= y --> b*c <= x*y (uses the fact that a is not negative)
// 0 <= a <= x <= b, y <= d --> x*y <= b*d (uses the fact that a is not negative)
TRACE("interval_bug", tout << "(P, M) #" << call_id << "\n";);
set_lower_is_open(r, b_o || c_o);
set_upper_is_open(r, b_o || d_o);
round_to_minus_inf();
::mul(m(), b, b_k, c, c_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), b, b_k, d, d_k, new_u_val, new_u_kind);
}
else {
SASSERT(is_P(i2));
// 0 <= a <= x, 0 <= c <= y --> a*c <= x*y
// x <= b, y <= d --> x*y <= b*d (uses the fact that x is pos (a is not negative) or y is pos (c is not negative))
TRACE("interval_bug", tout << "(P, P) #" << call_id << "\n";);
set_lower_is_open(r, (is_P0(i1) || is_P0(i2)) ? false : a_o || c_o);
set_upper_is_open(r, b_o || d_o);
round_to_minus_inf();
::mul(m(), a, a_k, c, c_k, new_l_val, new_l_kind);
round_to_plus_inf();
::mul(m(), b, b_k, d, d_k, new_u_val, new_u_kind);
}
}
m().swap(lower(r), new_l_val);
m().swap(upper(r), new_u_val);
set_lower_is_inf(r, new_l_kind == EN_MINUS_INFINITY);
set_upper_is_inf(r, new_u_kind == EN_PLUS_INFINITY);
SASSERT(!(i1_contains_zero || i2_contains_zero) || contains_zero(r));
TRACE("interval_bug", tout << "result: "; display(tout, r); tout << "\n";);
#ifdef _TRACE
call_id++;
#endif
}
template
void interval_manager::power_jst(interval const & a, unsigned n, interval_deps_combine_rule & b_deps) {
if (n == 1) {
b_deps.m_lower_combine = DEP_IN_LOWER1;
b_deps.m_upper_combine = DEP_IN_UPPER1;
}
else if (n % 2 == 0) {
if (lower_is_pos(a)) {
// [l, u]^n = [l^n, u^n] if l > 0
// 0 < l <= x --> l^n <= x^n (lower bound guarantees that is positive)
// 0 < l <= x <= u --> x^n <= u^n (use lower and upper bound -- need the fact that x is positive)
b_deps.m_lower_combine = DEP_IN_LOWER1;
if (upper_is_inf(a))
b_deps.m_upper_combine = 0;
else
b_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
}
else if (upper_is_neg(a)) {
// [l, u]^n = [u^n, l^n] if u < 0
// l <= x <= u < 0 --> x^n <= l^n (use lower and upper bound -- need the fact that x is negative)
// x <= u < 0 --> u^n <= x^n
b_deps.m_lower_combine = DEP_IN_UPPER1;
if (lower_is_inf(a))
b_deps.m_upper_combine = 0;
else
b_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
}
else {
// [l, u]^n = [0, max{l^n, u^n}] otherwise
// we need both bounds to justify upper bound
b_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
b_deps.m_lower_combine = 0;
}
}
else {
// Remark: when n is odd x^n is monotonic.
if (lower_is_inf(a))
b_deps.m_lower_combine = 0;
else
b_deps.m_lower_combine = DEP_IN_LOWER1;
if (upper_is_inf(a))
b_deps.m_upper_combine = 0;
else
b_deps.m_upper_combine = DEP_IN_UPPER1;
}
}
template
void interval_manager::power(interval const & a, unsigned n, interval & b, interval_deps_combine_rule & b_deps) {
power_jst(a, n, b_deps);
power(a, n, b);
}
template
void interval_manager::power(interval const & a, unsigned n, interval & b) {
#ifdef _TRACE
static unsigned call_id = 0;
#endif
if (n == 1) {
set(b, a);
}
else if (n % 2 == 0) {
if (lower_is_pos(a)) {
// [l, u]^n = [l^n, u^n] if l > 0
// 0 < l <= x --> l^n <= x^n (lower bound guarantees that is positive)
// 0 < l <= x <= u --> x^n <= u^n (use lower and upper bound -- need the fact that x is positive)
SASSERT(!lower_is_inf(a));
round_to_minus_inf();
m().power(lower(a), n, lower(b));
set_lower_is_inf(b, false);
set_lower_is_open(b, lower_is_open(a));
if (upper_is_inf(a)) {
reset_upper(b);
}
else {
round_to_plus_inf();
m().power(upper(a), n, upper(b));
set_upper_is_inf(b, false);
set_upper_is_open(b, upper_is_open(a));
}
}
else if (upper_is_neg(a)) {
// [l, u]^n = [u^n, l^n] if u < 0
// l <= x <= u < 0 --> x^n <= l^n (use lower and upper bound -- need the fact that x is negative)
// x <= u < 0 --> u^n <= x^n
SASSERT(!upper_is_inf(a));
bool lower_a_open = lower_is_open(a), upper_a_open = upper_is_open(a);
bool lower_a_inf = lower_is_inf(a);
m().set(lower(b), lower(a));
m().set(upper(b), upper(a));
m().swap(lower(b), upper(b)); // we use a swap because a and b can be aliased
round_to_minus_inf();
m().power(lower(b), n, lower(b));
set_lower_is_open(b, upper_a_open);
set_lower_is_inf(b, false);
if (lower_a_inf) {
reset_upper(b);
}
else {
round_to_plus_inf();
m().power(upper(b), n, upper(b));
set_upper_is_inf(b, false);
set_upper_is_open(b, lower_a_open);
}
}
else {
// [l, u]^n = [0, max{l^n, u^n}] otherwise
// we need both bounds to justify upper bound
TRACE("interval_bug", tout << "(M) #" << call_id << "\n"; display(tout, a); tout << "\nn:" << n << "\n";);
ext_numeral_kind un1_kind = lower_kind(a), un2_kind = upper_kind(a);
numeral & un1 = m_result_lower;
numeral & un2 = m_result_upper;
m().set(un1, lower(a));
m().set(un2, upper(a));
round_to_plus_inf();
::power(m(), un1, un1_kind, n);
::power(m(), un2, un2_kind, n);
if (::gt(m(), un1, un1_kind, un2, un2_kind) || (::eq(m(), un1, un1_kind, un2, un2_kind) && !lower_is_open(a) && upper_is_open(a))) {
m().swap(upper(b), un1);
set_upper_is_inf(b, un1_kind == EN_PLUS_INFINITY);
set_upper_is_open(b, lower_is_open(a));
}
else {
m().swap(upper(b), un2);
set_upper_is_inf(b, un2_kind == EN_PLUS_INFINITY);
set_upper_is_open(b, upper_is_open(a));
}
m().reset(lower(b));
set_lower_is_inf(b, false);
set_lower_is_open(b, false);
}
}
else {
// Remark: when n is odd x^n is monotonic.
if (lower_is_inf(a)) {
reset_lower(b);
}
else {
m().power(lower(a), n, lower(b));
set_lower_is_inf(b, false);
set_lower_is_open(b, lower_is_open(a));
}
if (upper_is_inf(a)) {
reset_upper(b);
}
else {
m().power(upper(a), n, upper(b));
set_upper_is_inf(b, false);
set_upper_is_open(b, upper_is_open(a));
}
}
TRACE("interval_bug", tout << "result: "; display(tout, b); tout << "\n";);
#ifdef _TRACE
call_id++;
#endif
}
template
void interval_manager::nth_root(interval const & a, unsigned n, numeral const & p, interval & b, interval_deps_combine_rule & b_deps) {
nth_root_jst(a, n, p, b_deps);
nth_root(a, n, p, b);
}
template
void interval_manager::nth_root(interval const & a, unsigned n, numeral const & p, interval & b) {
SASSERT(n % 2 != 0 || !lower_is_neg(a));
if (n == 1) {
set(b, a);
return;
}
if (lower_is_inf(a)) {
SASSERT(n % 2 != 0); // n must not be even.
m().reset(lower(b));
set_lower_is_inf(b, true);
set_lower_is_open(b, true);
}
else {
numeral & lo = m_result_lower;
numeral & hi = m_result_upper;
nth_root(lower(a), n, p, lo, hi);
set_lower_is_inf(b, false);
set_lower_is_open(b, lower_is_open(a) && m().eq(lo, hi));
m().set(lower(b), lo);
}
if (upper_is_inf(a)) {
m().reset(upper(b));
set_upper_is_inf(b, true);
set_upper_is_open(b, true);
}
else {
numeral & lo = m_result_lower;
numeral & hi = m_result_upper;
nth_root(upper(a), n, p, lo, hi);
set_upper_is_inf(b, false);
set_upper_is_open(b, upper_is_open(a) && m().eq(lo, hi));
m().set(upper(b), hi);
}
TRACE("interval_nth_root", display(tout, a); tout << " --> "; display(tout, b); tout << "\n";);
}
template
void interval_manager::nth_root_jst(interval const & a, unsigned n, numeral const & p, interval_deps_combine_rule & b_deps) {
b_deps.m_lower_combine = DEP_IN_LOWER1;
if (n % 2 == 0)
b_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
else
b_deps.m_upper_combine = DEP_IN_UPPER1;
}
template
void interval_manager::xn_eq_y(interval const & y, unsigned n, numeral const & p, interval & x, interval_deps_combine_rule & x_deps) {
xn_eq_y_jst(y, n, p, x_deps);
xn_eq_y(y, n, p, x);
}
template
void interval_manager::xn_eq_y(interval const & y, unsigned n, numeral const & p, interval & x) {
SASSERT(n % 2 != 0 || !lower_is_neg(y));
if (n % 2 == 0) {
SASSERT(!lower_is_inf(y));
if (upper_is_inf(y)) {
reset(x);
}
else {
numeral & lo = m_result_lower;
numeral & hi = m_result_upper;
nth_root(upper(y), n, p, lo, hi);
// result is [-hi, hi]
// result is open if upper(y) is open and lo == hi
TRACE("interval_xn_eq_y", tout << "x^n = "; display(tout, y); tout << "\n";
tout << "sqrt(y) in "; m().display(tout, lo); tout << " "; m().display(tout, hi); tout << "\n";);
bool open = upper_is_open(y) && m().eq(lo, hi);
set_lower_is_inf(x, false);
set_upper_is_inf(x, false);
set_lower_is_open(x, open);
set_upper_is_open(x, open);
m().set(upper(x), hi);
round_to_minus_inf();
m().set(lower(x), hi);
m().neg(lower(x));
TRACE("interval_xn_eq_y", tout << "interval for x: "; display(tout, x); tout << "\n";);
}
}
else {
SASSERT(n % 2 == 1); // n is odd
nth_root(y, n, p, x);
}
}
template
void interval_manager::xn_eq_y_jst(interval const & y, unsigned n, numeral const & p, interval_deps_combine_rule & x_deps) {
if (n % 2 == 0) {
x_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
x_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
}
else {
x_deps.m_lower_combine = DEP_IN_LOWER1;
x_deps.m_upper_combine = DEP_IN_UPPER1;
}
}
template
void interval_manager::inv_jst(interval const & a, interval_deps_combine_rule & b_deps) {
SASSERT(!contains_zero(a));
if (is_P1(a)) {
b_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
b_deps.m_upper_combine = DEP_IN_LOWER1;
}
else if (is_N1(a)) {
// x <= u < 0 --> 1/u <= 1/x
// l <= x <= u < 0 --> 1/l <= 1/x (use lower and upper bounds)
b_deps.m_lower_combine = DEP_IN_UPPER1;
b_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER1;
}
else {
UNREACHABLE();
}
}
template
void interval_manager::inv(interval const & a, interval & b, interval_deps_combine_rule & b_deps) {
inv_jst(a, b_deps);
inv(a, b);
}
template
void interval_manager::inv(interval const & a, interval & b) {
#ifdef _TRACE
static unsigned call_id = 0;
#endif
// If the interval [l,u] does not contain 0, then 1/[l,u] = [1/u, 1/l]
SASSERT(!contains_zero(a));
TRACE("interval_bug", tout << "(inv) #" << call_id << "\n"; display(tout, a); tout << "\n";);
numeral & new_l_val = m_result_lower;
numeral & new_u_val = m_result_upper;
ext_numeral_kind new_l_kind, new_u_kind;
if (is_P1(a)) {
// 0 < l <= x --> 1/x <= 1/l
// 0 < l <= x <= u --> 1/u <= 1/x (use lower and upper bounds)
round_to_minus_inf();
m().set(new_l_val, upper(a)); new_l_kind = upper_kind(a);
::inv(m(), new_l_val, new_l_kind);
SASSERT(new_l_kind == EN_NUMERAL);
bool new_l_open = upper_is_open(a);
if (lower_is_zero(a)) {
SASSERT(lower_is_open(a));
m().reset(upper(b));
set_upper_is_inf(b, true);
set_upper_is_open(b, true);
}
else {
round_to_plus_inf();
m().set(new_u_val, lower(a));
m().inv(new_u_val);
m().swap(upper(b), new_u_val);
set_upper_is_inf(b, false);
set_upper_is_open(b, lower_is_open(a));
}
m().swap(lower(b), new_l_val);
set_lower_is_inf(b, false);
set_lower_is_open(b, new_l_open);
}
else if (is_N1(a)) {
// x <= u < 0 --> 1/u <= 1/x
// l <= x <= u < 0 --> 1/l <= 1/x (use lower and upper bounds)
round_to_plus_inf();
m().set(new_u_val, lower(a)); new_u_kind = lower_kind(a);
::inv(m(), new_u_val, new_u_kind);
SASSERT(new_u_kind == EN_NUMERAL);
bool new_u_open = lower_is_open(a);
if (upper_is_zero(a)) {
SASSERT(upper_is_open(a));
m().reset(lower(b));
set_lower_is_open(b, true);
set_lower_is_inf(b, true);
}
else {
round_to_minus_inf();
m().set(new_l_val, upper(a));
m().inv(new_l_val);
m().swap(lower(b), new_l_val);
set_lower_is_inf(b, false);
set_lower_is_open(b, upper_is_open(a));
}
m().swap(upper(b), new_u_val);
set_upper_is_inf(b, false);
set_upper_is_open(b, new_u_open);
}
else {
UNREACHABLE();
}
TRACE("interval_bug", tout << "result: "; display(tout, b); tout << "\n";);
#ifdef _TRACE
call_id++;
#endif
}
template
void interval_manager::div_jst(interval const & i1, interval const & i2, interval_deps_combine_rule & r_deps) {
SASSERT(!contains_zero(i2));
if (is_zero(i1)) {
if (is_P1(i2)) {
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2;
}
else {
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2;
}
}
else {
if (is_N(i1)) {
if (is_N1(i2)) {
// x <= b <= 0, c <= y <= d < 0 --> b/c <= x/y
// a <= x <= b <= 0, y <= d < 0 --> x/y <= a/d
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2;
}
else {
// a <= x, a < 0, 0 < c <= y --> a/c <= x/y
// x <= b <= 0, 0 < c <= y <= d --> x/y <= b/d
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
}
}
else if (is_M(i1)) {
if (is_N1(i2)) {
// 0 < a <= x <= b < 0, y <= d < 0 --> b/d <= x/y
// 0 < a <= x <= b < 0, y <= d < 0 --> x/y <= a/d
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_UPPER2;
}
else {
// 0 < a <= x <= b < 0, 0 < c <= y --> a/c <= x/y
// 0 < a <= x <= b < 0, 0 < c <= y --> x/y <= b/c
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2;
}
}
else {
SASSERT(is_P(i1));
if (is_N1(i2)) {
// b > 0, x <= b, c <= y <= d < 0 --> b/d <= x/y
// 0 <= a <= x, c <= y <= d < 0 --> x/y <= a/c
r_deps.m_lower_combine = DEP_IN_UPPER1 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
}
else {
SASSERT(is_P1(i2));
// 0 <= a <= x, 0 < c <= y <= d --> a/d <= x/y
// b > 0 x <= b, 0 < c <= y --> x/y <= b/c
r_deps.m_lower_combine = DEP_IN_LOWER1 | DEP_IN_LOWER2 | DEP_IN_UPPER2;
r_deps.m_upper_combine = DEP_IN_UPPER1 | DEP_IN_LOWER2;
}
}
}
}
template
void interval_manager::div(interval const & i1, interval const & i2, interval & r, interval_deps_combine_rule & r_deps) {
div_jst(i1, i2, r_deps);
div(i1, i2, r);
}
template
void interval_manager::div(interval const & i1, interval const & i2, interval & r) {
#ifdef _TRACE
static unsigned call_id = 0;
#endif
SASSERT(!contains_zero(i2));
SASSERT(&i1 != &r);
if (is_zero(i1)) {
TRACE("interval_bug", tout << "div #" << call_id << "\n"; display(tout, i1); tout << "\n"; display(tout, i2); tout << "\n";);
// 0/other = 0 if other != 0
m().reset(lower(r));
m().reset(upper(r));
set_lower_is_inf(r, false);
set_upper_is_inf(r, false);
set_lower_is_open(r, false);
set_upper_is_open(r, false);
}
else {
numeral const & a = lower(i1); ext_numeral_kind a_k = lower_kind(i1);
numeral const & b = upper(i1); ext_numeral_kind b_k = upper_kind(i1);
numeral const & c = lower(i2); ext_numeral_kind c_k = lower_kind(i2);
numeral const & d = upper(i2); ext_numeral_kind d_k = upper_kind(i2);
bool a_o = lower_is_open(i1);
bool b_o = upper_is_open(i1);
bool c_o = lower_is_open(i2);
bool d_o = upper_is_open(i2);
numeral & new_l_val = m_result_lower;
numeral & new_u_val = m_result_upper;
ext_numeral_kind new_l_kind, new_u_kind;
TRACE("interval_bug", tout << "div #" << call_id << "\n"; display(tout, i1); tout << "\n"; display(tout, i2); tout << "\n";
tout << "a: "; m().display(tout, a); tout << "\n";
tout << "b: "; m().display(tout, b); tout << "\n";
tout << "c: "; m().display(tout, c); tout << "\n";
tout << "d: "; m().display(tout, d); tout << "\n";
);
if (is_N(i1)) {
if (is_N1(i2)) {
// x <= b <= 0, c <= y <= d < 0 --> b/c <= x/y
// a <= x <= b <= 0, y <= d < 0 --> x/y <= a/d
TRACE("interval_bug", tout << "(N, N) #" << call_id << "\n";);
set_lower_is_open(r, is_N0(i1) ? false : b_o || c_o);
set_upper_is_open(r, a_o || d_o);
round_to_minus_inf();
::div(m(), b, b_k, c, c_k, new_l_val, new_l_kind);
if (m().is_zero(d)) {
SASSERT(d_o);
m().reset(new_u_val);
new_u_kind = EN_PLUS_INFINITY;
}
else {
round_to_plus_inf();
::div(m(), a, a_k, d, d_k, new_u_val, new_u_kind);
}
}
else {
// a <= x, a < 0, 0 < c <= y --> a/c <= x/y
// x <= b <= 0, 0 < c <= y <= d --> x/y <= b/d
TRACE("interval_bug", tout << "(N, P) #" << call_id << "\n";);
SASSERT(is_P1(i2));
set_upper_is_open(r, is_N0(i1) ? false : (b_o || d_o));
set_lower_is_open(r, a_o || c_o);
if (m().is_zero(c)) {
SASSERT(c_o);
m().reset(new_l_val);
new_l_kind = EN_MINUS_INFINITY;
}
else {
round_to_minus_inf();
::div(m(), a, a_k, c, c_k, new_l_val, new_l_kind);
}
round_to_plus_inf();
::div(m(), b, b_k, d, d_k, new_u_val, new_u_kind);
}
}
else if (is_M(i1)) {
if (is_N1(i2)) {
// 0 < a <= x <= b < 0, y <= d < 0 --> b/d <= x/y
// 0 < a <= x <= b < 0, y <= d < 0 --> x/y <= a/d
TRACE("interval_bug", tout << "(M, N) #" << call_id << "\n";);
set_lower_is_open(r, b_o || d_o);
set_upper_is_open(r, a_o || d_o);
if (m().is_zero(d)) {
SASSERT(d_o);
m().reset(new_l_val); m().reset(new_u_val);
new_l_kind = EN_MINUS_INFINITY;
new_u_kind = EN_PLUS_INFINITY;
}
else {
round_to_minus_inf();
::div(m(), b, b_k, d, d_k, new_l_val, new_l_kind);
round_to_plus_inf();
::div(m(), a, a_k, d, d_k, new_u_val, new_u_kind);
TRACE("interval_bug", tout << "new_l_kind: " << new_l_kind << ", new_u_kind: " << new_u_kind << "\n";);
}
}
else {
// 0 < a <= x <= b < 0, 0 < c <= y --> a/c <= x/y
// 0 < a <= x <= b < 0, 0 < c <= y --> x/y <= b/c
TRACE("interval_bug", tout << "(M, P) #" << call_id << "\n";);
SASSERT(is_P1(i2));
set_lower_is_open(r, a_o || c_o);
set_upper_is_open(r, b_o || c_o);
if (m().is_zero(c)) {
SASSERT(c_o);
m().reset(new_l_val); m().reset(new_u_val);
new_l_kind = EN_MINUS_INFINITY;
new_u_kind = EN_PLUS_INFINITY;
}
else {
round_to_minus_inf();
::div(m(), a, a_k, c, c_k, new_l_val, new_l_kind);
round_to_plus_inf();
::div(m(), b, b_k, c, c_k, new_u_val, new_u_kind);
}
}
}
else {
SASSERT(is_P(i1));
if (is_N1(i2)) {
// b > 0, x <= b, c <= y <= d < 0 --> b/d <= x/y
// 0 <= a <= x, c <= y <= d < 0 --> x/y <= a/c
TRACE("interval_bug", tout << "(P, N) #" << call_id << "\n";);
set_upper_is_open(r, is_P0(i1) ? false : a_o || c_o);
set_lower_is_open(r, b_o || d_o);
if (m().is_zero(d)) {
SASSERT(d_o);
m().reset(new_l_val);
new_l_kind = EN_MINUS_INFINITY;
}
else {
round_to_minus_inf();
::div(m(), b, b_k, d, d_k, new_l_val, new_l_kind);
}
round_to_plus_inf();
::div(m(), a, a_k, c, c_k, new_u_val, new_u_kind);
}
else {
SASSERT(is_P1(i2));
// 0 <= a <= x, 0 < c <= y <= d --> a/d <= x/y
// b > 0 x <= b, 0 < c <= y --> x/y <= b/c
TRACE("interval_bug", tout << "(P, P) #" << call_id << "\n";);
set_lower_is_open(r, is_P0(i1) ? false : a_o || d_o);
set_upper_is_open(r, b_o || c_o);
round_to_minus_inf();
::div(m(), a, a_k, d, d_k, new_l_val, new_l_kind);
if (m().is_zero(c)) {
SASSERT(c_o);
m().reset(new_u_val);
new_u_kind = EN_PLUS_INFINITY;
}
else {
round_to_plus_inf();
::div(m(), b, b_k, c, c_k, new_u_val, new_u_kind);
}
}
}
m().swap(lower(r), new_l_val);
m().swap(upper(r), new_u_val);
set_lower_is_inf(r, new_l_kind == EN_MINUS_INFINITY);
set_upper_is_inf(r, new_u_kind == EN_PLUS_INFINITY);
}
TRACE("interval_bug", tout << "result: "; display(tout, r); tout << "\n";);
#ifdef _TRACE
call_id++;
#endif
}
template
void interval_manager::pi_series(int x, numeral & r, bool up) {
// Store in r the value: 1/16^x (4/(8x + 1) - 2/(8x + 4) - 1/(8x + 5) - 1/(8x + 6))
_scoped_numeral f(m());
set_rounding(up);
m().set(r, 4, 8*x + 1);
set_rounding(!up);
m().set(f, 2, 8*x + 4);
set_rounding(up);
m().sub(r, f, r);
set_rounding(!up);
m().set(f, 1, 8*x + 5);
set_rounding(up);
m().sub(r, f, r);
set_rounding(!up);
m().set(f, 1, 8*x + 6);
set_rounding(up);
m().sub(r, f, r);
m().set(f, 1, 16);
m().power(f, x, f);
m().mul(r, f, r);
}
template
void interval_manager::pi(unsigned n, interval & r) {
// Compute an interval that contains pi using the series
// P[0] + P[1] + ... + P[n]
// where
// P[n] := 1/16^x (4/(8x + 1) - 2/(8x + 4) - 1/(8x + 5) - 1/(8x + 6))
//
// The size of the interval is 1/15 * 1/(16^n)
//
// Lower is P[0] + P[1] + ... + P[n]
// Upper is Lower + 1/15 * 1/(16^n)
// compute size of the resulting interval
round_to_plus_inf(); // overestimate size of the interval
_scoped_numeral len(m());
_scoped_numeral p(m());
m().set(len, 1, 16);
m().power(len, n, len);
m().set(p, 1, 15);
m().mul(p, len, len);
// compute lower bound
numeral & l_val = m_result_lower;
m().reset(l_val);
for (unsigned i = 0; i <= n; i++) {
pi_series(i, p, false);
round_to_minus_inf();
m().add(l_val, p, l_val);
}
// computer upper bound
numeral & u_val = m_result_upper;
if (m().precise()) {
// the numeral manager is precise, so we do not need to recompute the series
m().add(l_val, len, u_val);
}
else {
// recompute the sum rounding to plus infinite
m().reset(u_val);
for (unsigned i = 0; i <= n; i++) {
pi_series(i, p, true);
round_to_plus_inf();
m().add(u_val, p, u_val);
}
round_to_plus_inf();
m().add(u_val, len, u_val);
}
set_lower_is_open(r, false);
set_upper_is_open(r, false);
set_lower_is_inf(r, false);
set_upper_is_inf(r, false);
m().set(lower(r), l_val);
m().set(upper(r), u_val);
}
template
void interval_manager::set_pi_prec(unsigned n) {
SASSERT(n > 0);
m_pi_n = n;
pi(n, m_pi);
mul(1, 2, m_pi, m_pi_div_2);
mul(3, 2, m_pi, m_3_pi_div_2);
mul(2, 1, m_pi, m_2_pi);
}
template
void interval_manager::set_pi_at_least_prec(unsigned n) {
if (n > m_pi_n)
set_pi_prec(n);
}
template
void interval_manager::e_series(unsigned k, bool upper, numeral & o) {
_scoped_numeral d(m()), a(m());
m().set(o, 2);
m().set(d, 1);
for (unsigned i = 2; i <= k; i++) {
set_rounding(!upper);
m().set(a, static_cast(i));
m().mul(d, a, d); // d == i!
m().set(a, d);
set_rounding(upper);
m().inv(a); // a == 1/i!
m().add(o, a, o);
}
}
template
void interval_manager::e(unsigned k, interval & r) {
// Store in r lower and upper bounds for Euler's constant.
//
// The procedure uses the series
//
// V = 1 + 1/1 + 1/2! + 1/3! + ... + 1/k!
//
// The error in the approximation above is <= E = 4/(k+1)!
// Thus, e must be in the interval [V, V+E]
numeral & lo = m_result_lower;
numeral & hi = m_result_upper;
e_series(k, false, lo);
_scoped_numeral error(m()), aux(m());
round_to_minus_inf();
fact(k+1, error);
round_to_plus_inf();
m().inv(error); // error == 1/(k+1)!
m().set(aux, 4);
m().mul(aux, error, error); // error == 4/(k+1)!
if (m().precise()) {
m().set(hi, lo);
m().add(hi, error, hi);
}
else {
e_series(k, true, hi);
round_to_plus_inf();
m().add(hi, error, hi);
}
set_lower_is_open(r, false);
set_upper_is_open(r, false);
set_lower_is_inf(r, false);
set_upper_is_inf(r, false);
m().set(lower(r), lo);
m().set(upper(r), hi);
}