All Downloads are FREE. Search and download functionalities are using the official Maven repository.

z3-z3-4.13.0.src.math.lp.bound_analyzer_on_row.h Maven / Gradle / Ivy

The newest version!
/*++
Copyright (c) 2017 Microsoft Corporation

Module Name:

    

Abstract:

    We have an equality : sum by j of row[j]*x[j] = rs
    We try to pin a var by pushing the total by using the variable bounds
    on a loop we drive the partial sum down, denoting the variables of this process by _u.
    In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l

Author:
    Lev Nachmanson  (levnach)
    Nikolaj Bjorner (nbjorner)
Revision History:


--*/
#pragma once

#include "util/vector.h"
#include "math/lp/implied_bound.h"
#include "math/lp/test_bound_analyzer.h"

namespace lp {
  
 
template  // C plays a role of a container, B - lp_bound_propagator
class bound_analyzer_on_row {
    const C&                           m_row;
    B &                                m_bp;
    unsigned                           m_row_index;
    int                                m_column_of_u; // index of an unlimited from above monoid
    // -1 means that such a value is not found, -2 means that at least two of such monoids were found
    int                                m_column_of_l; // index of an unlimited from below monoid
    impq                               m_rs;

public :
    // constructor
    bound_analyzer_on_row(
        const C & it,
        unsigned  bj, // basis column for the row
        const numeric_pair& rs,
        unsigned row_or_term_index,
        B & bp)
        :
        m_row(it),
        m_bp(bp),
        m_row_index(row_or_term_index),
        m_column_of_u(-1),
        m_column_of_l(-1),
        m_rs(rs)
    {}

    
    static unsigned analyze_row(const C & row,
                            unsigned bj, // basis column for the row
                            const numeric_pair& rs,
                            unsigned row_or_term_index,
                            B & bp) {
        bound_analyzer_on_row a(row, bj, rs, row_or_term_index, bp);
        return a.analyze();
    }

private:

    unsigned analyze() {
        unsigned num_prop = 0;
        for (const auto & c : m_row) {
            if ((m_column_of_l == -2) && (m_column_of_u == -2))
                return 0;
            analyze_bound_on_var_on_coeff(c.var(), c.coeff());
        }
        ++num_prop;
        if (m_column_of_u >= 0)
            limit_monoid_u_from_below();
        else if (m_column_of_u == -1)
            limit_all_monoids_from_below();
        else
            --num_prop;

        ++num_prop;
        if (m_column_of_l >= 0)
            limit_monoid_l_from_above();
        else if (m_column_of_l == -1)
            limit_all_monoids_from_above();
        else
            --num_prop;
        return num_prop;
    }

    bool bound_is_available(unsigned j, bool lower_bound) {
        return (lower_bound && m_bp.lower_bound_is_available(j)) ||
            (!lower_bound && m_bp.upper_bound_is_available(j));
    }

    const impq & ub(unsigned j) const {
        lp_assert(m_bp.upper_bound_is_available(j));
        return m_bp.get_upper_bound(j);
    }

    const impq & lb(unsigned j) const {
        lp_assert(m_bp.lower_bound_is_available(j));
        return m_bp.get_lower_bound(j);
    }

    const mpq & monoid_max_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
        if (a_is_pos) {
            strict = !is_zero(ub(j).y);
            return ub(j).x;
        }
        strict = !is_zero(lb(j).y);
        return lb(j).x;
    }

    mpq monoid_max(const mpq & a, unsigned j) const {
        return a * (is_pos(a) ? ub(j).x : lb(j).x);
    }

    mpq monoid_max(const mpq & a, unsigned j, bool & strict) const {
        if (is_pos(a)) {
            strict = !is_zero(ub(j).y);
            return a * ub(j).x;
        }
        strict = !is_zero(lb(j).y);
        return a * lb(j).x;
    }

    const mpq & monoid_min_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
        if (!a_is_pos) {
            strict = !is_zero(ub(j).y);
            return ub(j).x;
        }
        strict = !is_zero(lb(j).y);
        return lb(j).x;
    }

    mpq monoid_min(const mpq & a, unsigned j, bool& strict) const {
        if (is_neg(a)) {
            strict = !is_zero(ub(j).y);
            return a * ub(j).x;
        }        
        strict = !is_zero(lb(j).y);
        return a * lb(j).x;
    }

    mpq monoid_min(const mpq & a, unsigned j) const {
        return a * (is_neg(a) ? ub(j).x : lb(j).x);
    }
    
    mpq m_total, m_bound;
    void limit_all_monoids_from_above() {
        int strict = 0;
        m_total.reset();
        lp_assert(is_zero(m_total));
        for (const auto& p : m_row) {
            bool str;
            m_total -= monoid_min(p.coeff(), p.var(), str);
            if (str)
                strict++;
        }
        
        for (const auto &p : m_row) {
            bool str;
            bool a_is_pos = is_pos(p.coeff());
            m_bound = m_total;
            m_bound /= p.coeff();
            m_bound += monoid_min_no_mult(a_is_pos, p.var(), str);
            if (a_is_pos) {
                limit_j(p.var(), m_bound, true, false, strict - static_cast(str) > 0);
            }
            else {
                limit_j(p.var(), m_bound, false, true, strict - static_cast(str) > 0);
            }
        }
    }

    void limit_all_monoids_from_below() {
        int strict = 0;
        m_total.reset();
        lp_assert(is_zero(m_total));
        for (const auto &p : m_row) {
            bool str;
            m_total -= monoid_max(p.coeff(), p.var(), str);
            if (str)
                strict++;
        }

        for (const auto& p : m_row) {
            bool str;
            bool a_is_pos = is_pos(p.coeff());
            m_bound = m_total;
            m_bound /= p.coeff();
            m_bound += monoid_max_no_mult(a_is_pos, p.var(), str);
            bool astrict = strict - static_cast(str) > 0; 
            if (a_is_pos) {
                limit_j(p.var(), m_bound, true, true, astrict);
            }
            else {
                limit_j(p.var(), m_bound, false, false, astrict);
            }
        }
    }

    
    void limit_monoid_u_from_below() {
        // we are going to limit from below the monoid m_column_of_u,
        // every other monoid is impossible to limit from below
        mpq u_coeff;
        unsigned j;
        m_bound = -m_rs.x;
        bool strict = false;
        for (const auto& p : m_row) {
            j = p.var();
            if (j == static_cast(m_column_of_u)) {
                u_coeff = p.coeff();
                continue;
            }
            bool str;
            m_bound -= monoid_max(p.coeff(), j, str);
            if (str)
                strict = true;
        }

        m_bound /= u_coeff;
        
        if (u_coeff.is_pos()) {
            limit_j(m_column_of_u, m_bound, true, true, strict);
        } else {
            limit_j(m_column_of_u, m_bound, false, false, strict);
        }
    }


    void limit_monoid_l_from_above() {
        // we are going to limit from above the monoid m_column_of_l,
        // every other monoid is impossible to limit from above
        mpq l_coeff;
        unsigned j;
        m_bound = -m_rs.x;
        bool strict = false;
        for (const auto &p : m_row) {
            j = p.var();
            if (j == static_cast(m_column_of_l)) {
                l_coeff = p.coeff();
                continue;
            }

            bool str;
            m_bound -= monoid_min(p.coeff(), j, str);
            if (str)
                strict = true;
        }
        m_bound /= l_coeff;
        if (is_pos(l_coeff)) {
            limit_j(m_column_of_l, m_bound, true, false, strict);
        } else {
            limit_j(m_column_of_l, m_bound, false, true, strict);
        }
    }
    
    // // it is the coefficient before the bounded column
    // void provide_evidence(bool coeff_is_pos) {
    //     /*
    //     auto & be = m_ibounds.back();
    //     bool lower_bound = be.m_lower_bound;
    //     if (!coeff_is_pos)
    //         lower_bound = !lower_bound;
    //     auto it = m_row.clone();
    //     mpq a; unsigned j;
    //     while (it->next(a, j)) {
    //         if (be.m_j == j) continue;
    //         lp_assert(bound_is_available(j, is_neg(a) ? lower_bound : !lower_bound));
    //         be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits::
    //                                                      is_neg(a)? lower_bound: !lower_bound);
    //     }
    //     delete it;
    //     */
    // }

    void limit_j(unsigned bound_j, const mpq& u, bool coeff_before_j_is_pos, bool is_lower_bound, bool strict)
    {
        unsigned row_index = this->m_row_index;
        auto* lar = &m_bp.lp();
        auto explain = [bound_j, coeff_before_j_is_pos, is_lower_bound, strict, row_index, lar]() {
            (void) strict;
            TRACE("bound_analyzer", tout << "explain_bound_on_var_on_coeff, bound_j = " << bound_j << ", coeff_before_j_is_pos = " << coeff_before_j_is_pos << ", is_lower_bound = " << is_lower_bound << ", strict = " << strict << ", row_index = " << row_index << "\n";);
            int bound_sign = (is_lower_bound ? 1 : -1);
            int j_sign = (coeff_before_j_is_pos ? 1 : -1) * bound_sign;

            u_dependency* ret = nullptr;
            for (auto const& r : lar->get_row(row_index)) {
                unsigned j = r.var();
                if (j == bound_j)
                    continue;
                mpq const& a = r.coeff();
                int a_sign = is_pos(a) ? 1 : -1;
                int sign = j_sign * a_sign;
                u_dependency* witness = sign > 0 ? lar->get_column_upper_bound_witness(j) : lar->get_column_lower_bound_witness(j);
                ret = lar->join_deps(ret, witness);
            }
            return ret;
        };
        m_bp.add_bound(u, bound_j, is_lower_bound, strict, explain);
    }

    void advance_u(unsigned j) {
        m_column_of_u = (m_column_of_u == -1) ? j : -2;
    }
    
    void advance_l(unsigned j) {
        m_column_of_l = (m_column_of_l == -1) ? j : -2;
    }
    
    void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
        switch (m_bp.get_column_type(j)) {
        case column_type::lower_bound:
            if (numeric_traits::is_pos(a))
                advance_u(j);
            else 
                advance_l(j);
            break;
        case column_type::upper_bound:
            if (numeric_traits::is_neg(a))
                advance_u(j);
            else
                advance_l(j);
            break;
        case column_type::free_column:
            advance_u(j);
            advance_l(j);
            break;
        default:
            break;
        }
    }   
    
};
   

}





© 2015 - 2024 Weber Informatics LLC | Privacy Policy