z3-z3-4.13.0.src.model.model_evaluator.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
model_evaluator.cpp
Abstract:
Evaluate expressions in a given model.
Author:
Leonardo de Moura (leonardo) 2011-04-30.
Revision History:
--*/
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
#include "ast/for_each_expr.h"
#include "ast/recfun_decl_plugin.h"
#include "ast/polymorphism_util.h"
#include "ast/rewriter/rewriter_types.h"
#include "ast/rewriter/bool_rewriter.h"
#include "ast/rewriter/arith_rewriter.h"
#include "ast/rewriter/bv_rewriter.h"
#include "ast/rewriter/pb_rewriter.h"
#include "ast/rewriter/seq_rewriter.h"
#include "ast/rewriter/datatype_rewriter.h"
#include "ast/rewriter/array_rewriter.h"
#include "ast/rewriter/fpa_rewriter.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/rewriter/var_subst.h"
#include "ast/rewriter/recfun_rewriter.h"
#include "model/model_smt2_pp.h"
#include "model/model.h"
#include "model/model_evaluator_params.hpp"
#include "model/model_evaluator.h"
#include "model/model_v2_pp.h"
namespace mev {
struct evaluator_cfg : public default_rewriter_cfg {
ast_manager & m;
model_core & m_model;
params_ref m_params;
bool_rewriter m_b_rw;
arith_rewriter m_a_rw;
bv_rewriter m_bv_rw;
array_rewriter m_ar_rw;
datatype_rewriter m_dt_rw;
pb_rewriter m_pb_rw;
fpa_rewriter m_f_rw;
seq_rewriter m_seq_rw;
recfun_rewriter m_rec_rw;
array_util m_ar;
arith_util m_au;
fpa_util m_fpau;
datatype::util m_dt;
unsigned long long m_max_memory;
unsigned m_max_steps;
bool m_model_completion;
bool m_array_equalities;
bool m_array_as_stores;
obj_map m_def_cache;
expr_ref_vector m_pinned;
evaluator_cfg(ast_manager & m, model_core & md, params_ref const & p):
m(m),
m_model(md),
m_params(p),
m_b_rw(m),
// We must allow customers to set parameters for arithmetic rewriter/evaluator.
// In particular, the maximum degree of algebraic numbers that will be evaluated.
m_a_rw(m, p),
m_bv_rw(m),
// See comment above. We want to allow customers to set :sort-store
m_ar_rw(m, p),
m_dt_rw(m),
m_pb_rw(m),
m_f_rw(m),
m_seq_rw(m),
m_rec_rw(m),
m_ar(m),
m_au(m),
m_fpau(m),
m_dt(m),
m_pinned(m) {
bool flat = true;
m_b_rw.set_flat_and_or(flat);
m_a_rw.set_flat(flat);
m_bv_rw.set_flat(flat);
m_bv_rw.set_mkbv2num(true);
m_ar_rw.set_expand_select_store(true);
m_ar_rw.set_expand_select_ite(true);
updt_params(p);
//add_unspecified_function_models(md);
}
void updt_params(params_ref const & _p) {
model_evaluator_params p(_p);
m_max_memory = megabytes_to_bytes(p.max_memory());
m_max_steps = p.max_steps();
m_model_completion = p.completion();
m_array_equalities = p.array_equalities();
m_array_as_stores = p.array_as_stores();
}
bool evaluate(func_decl * f, unsigned num, expr * const * args, expr_ref & result) {
func_interp * fi = m_model.get_func_interp(f);
bool r = (fi != nullptr) && eval_fi(fi, num, args, result);
CTRACE("model_evaluator", r, tout << "reduce_app " << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m) << "\n";
tout << "---->\n" << mk_ismt2_pp(result, m) << "\n";);
return r;
}
// Try to use the entries to quickly evaluate the fi
bool eval_fi(func_interp * fi, unsigned num, expr * const * args, expr_ref & result) {
if (fi->num_entries() == 0)
return false; // let get_macro handle it.
SASSERT(fi->get_arity() == num);
bool actuals_are_values = true;
for (unsigned i = 0; actuals_are_values && i < num; i++)
actuals_are_values = m.is_value(args[i]);
if (!actuals_are_values)
return false; // let get_macro handle it
func_entry * entry = fi->get_entry(args);
if (entry != nullptr) {
result = entry->get_result();
return true;
}
return false;
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
th_rewriter th(m);
return th.reduce_quantifier(old_q, new_body, new_patterns, new_no_patterns, result, result_pr);
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
auto st = reduce_app_core(f, num, args, result, result_pr);
CTRACE("model_evaluator", st != BR_FAILED,
tout << st << " " << mk_pp(f, m) << " ";
for (unsigned i = 0; i < num; ++i) tout << mk_pp(args[i], m) << " ";
tout << "\n--> " << result << "\n";);
return st;
}
bool contains_redex(expr* e) {
if (m_ar.is_as_array(e))
return true;
if (is_var(e))
return false;
if (is_app(e) && to_app(e)->get_num_args() == 0)
return false;
struct has_redex {};
struct has_redex_finder {
evaluator_cfg& ev;
has_redex_finder(evaluator_cfg& ev): ev(ev) {}
void operator()(var* v) {}
void operator()(quantifier* q) {}
void operator()(app* a) {
if (ev.m_ar.is_as_array(a->get_decl()))
throw has_redex();
if (ev.m_ar.get_manager().is_eq(a))
throw has_redex();
if (ev.m_fpau.is_fp(a))
throw has_redex();
}
};
has_redex_finder ha(*this);
try {
for_each_expr(ha, e);
}
catch (has_redex) {
return true;
}
return false;
}
br_status reduce_app_core(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
result_pr = nullptr;
family_id fid = f->get_family_id();
bool _is_uninterp = fid != null_family_id && m.get_plugin(fid)->is_considered_uninterpreted(f);
br_status st = BR_FAILED;
#if 0
struct pp {
func_decl* f;
expr_ref& r;
pp(func_decl* f, expr_ref& r) :f(f), r(r) {}
~pp() { TRACE("model_evaluator", tout << mk_pp(f, r.m()) << " " << r << "\n";); }
};
pp _pp(f, result);
#endif
func_decl* g = nullptr;
if (num == 0 && m_ar.is_as_array(f, g)) {
auto* fi = m_model.get_func_interp(g);
if (fi && (result = fi->get_array_interp(g)))
return BR_REWRITE1;
}
if (num == 0 && (fid == null_family_id || _is_uninterp)) {
expr* val = m_model.get_const_interp(f);
if (val != nullptr) {
result = val;
st = contains_redex(val) ? BR_REWRITE_FULL : BR_DONE;
TRACE("model_evaluator", tout << st << " " << result << "\n";);
return st;
}
if (!m_model_completion)
return BR_FAILED;
if (!m_ar.is_as_array(f)) {
sort * s = f->get_range();
expr * val = m_model.get_some_value(s);
m_model.register_decl(f, val);
result = val;
return BR_DONE;
}
// fall through
}
if (fid == m_b_rw.get_fid()) {
decl_kind k = f->get_decl_kind();
if (k == OP_EQ) {
// theory dispatch for =
SASSERT(num == 2);
sort* s = args[0]->get_sort();
family_id s_fid = s->get_family_id();
if (s_fid == m_a_rw.get_fid())
st = m_a_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_bv_rw.get_fid())
st = m_bv_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_dt_rw.get_fid())
st = m_dt_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_f_rw.get_fid())
st = m_f_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_seq_rw.get_fid())
st = m_seq_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_ar_rw.get_fid())
st = mk_array_eq(args[0], args[1], result);
else if (m.are_equal(args[0], args[1])) {
result = m.mk_true();
st = BR_DONE;
}
else if (m.are_distinct(args[0], args[1])) {
result = m.mk_false();
st = BR_DONE;
}
if (st != BR_FAILED)
return st;
}
if (k == OP_AND) {
st = m_a_rw.mk_and_core(num, args, result);
if (st != BR_FAILED)
return st;
}
return m_b_rw.mk_app_core(f, num, args, result);
}
if (fid == m_a_rw.get_fid())
st = m_a_rw.mk_app_core(f, num, args, result);
else if (fid == m_bv_rw.get_fid())
st = m_bv_rw.mk_app_core(f, num, args, result);
else if (fid == m_ar_rw.get_fid())
st = m_ar_rw.mk_app_core(f, num, args, result);
else if (fid == m_dt_rw.get_fid())
st = m_dt_rw.mk_app_core(f, num, args, result);
else if (fid == m_pb_rw.get_fid())
st = m_pb_rw.mk_app_core(f, num, args, result);
else if (fid == m_f_rw.get_fid())
st = m_f_rw.mk_app_core(f, num, args, result);
else if (fid == m_seq_rw.get_fid())
st = m_seq_rw.mk_app_core(f, num, args, result);
else if (fid == m_rec_rw.get_fid())
st = m_rec_rw.mk_app_core(f, num, args, result);
else if (fid == m.get_label_family_id() && num == 1) {
result = args[0];
st = BR_DONE;
}
else if (evaluate(f, num, args, result))
st = BR_REWRITE1;
if (st == BR_FAILED && !m.is_builtin_family_id(fid))
st = evaluate_partial_theory_func(f, num, args, result, result_pr);
if (st == BR_DONE && is_app(result)) {
app* a = to_app(result);
if (evaluate(a->get_decl(), a->get_num_args(), a->get_args(), result))
st = BR_REWRITE1;
}
if (st == BR_DONE && is_app(result) && expand_as_array(to_app(result)->get_decl(), result))
return BR_REWRITE_FULL;
if (st == BR_FAILED && expand_as_array(f, result))
return BR_REWRITE_FULL;
return st;
}
bool expand_as_array(func_decl* f, expr_ref& result) {
if (!m_model_completion)
return false;
func_decl* g = nullptr;
if (!m_ar.is_as_array(f, g))
return false;
expr* def = nullptr;
if (m_def_cache.find(g, def)) {
result = def;
TRACE("model_evaluator", tout << result << "\n";);
return true;
}
expr_ref tmp(m);
func_interp* fi = m_model.get_func_interp(g);
if (fi && !fi->get_else()) {
fi->set_else(m_model.get_some_value(g->get_range()));
}
if (fi && (tmp = fi->get_array_interp(g))) {
model_evaluator ev(m_model, m_params);
ev.set_model_completion(false);
result = ev(tmp);
m_pinned.push_back(result);
m_def_cache.insert(g, result);
TRACE("model_evaluator", tout << mk_pp(g, m) << " " << result << "\n";);
return true;
}
TRACE("model_evaluator",
tout << "could not get array interpretation " << mk_pp(g, m) << " " << fi << "\n";
tout << m_model << "\n";);
return false;
}
void expand_stores(expr_ref& val) {
TRACE("model_evaluator", tout << val << "\n";);
vector stores;
expr_ref else_case(m);
bool _unused;
if (m_array_as_stores &&
m_ar.is_array(val) &&
extract_array_func_interp(val, stores, else_case, _unused)) {
sort* srt = val->get_sort();
val = m_ar.mk_const_array(srt, else_case);
for (unsigned i = stores.size(); i-- > 0; ) {
expr_ref_vector args(m);
args.push_back(val);
args.append(stores[i].size(), stores[i].data());
val = m_ar.mk_store(args);
}
TRACE("model_evaluator", tout << val << "\n";);
}
}
bool reduce_macro() { return true; }
bool get_macro(func_decl * f, expr * & def, quantifier * & , proof * &) {
func_interp * fi = m_model.get_func_interp(f);
def = nullptr;
if (fi) {
if (fi->is_partial()) {
if (m_model_completion) {
sort * s = f->get_range();
expr * val = m_model.get_some_value(s);
fi->set_else(val);
}
else
return false;
}
def = fi->get_interp();
SASSERT(def != nullptr);
}
else if (f->is_polymorphic() && (fi = m_model.get_func_interp(m.poly_root(f)))) {
if (fi->is_partial()) {
if (m_model_completion) {
sort * s = f->get_range();
expr * val = m_model.get_some_value(s);
fi->set_else(val);
}
else
return false;
}
def = fi->get_interp();
polymorphism::substitution subst(m);
polymorphism::util util(m);
util.unify(f, m.poly_root(f), subst);
def = subst(def);
SASSERT(def != nullptr);
}
else if (m_model_completion &&
(f->get_family_id() == null_family_id ||
m.get_plugin(f->get_family_id())->is_considered_uninterpreted(f))) {
sort * s = f->get_range();
expr * val = m_model.get_some_value(s);
func_interp * new_fi = alloc(func_interp, m, f->get_arity());
new_fi->set_else(val);
m_model.register_decl(f, new_fi);
def = val;
SASSERT(def != nullptr);
}
CTRACE("model_evaluator", def != nullptr, tout << "get_macro for " << f->get_name() << " (model completion: " << m_model_completion << ") " << mk_pp(def, m) << "\n";);
return def != nullptr;
}
br_status evaluate_partial_theory_func(func_decl * f,
unsigned num, expr * const * args,
expr_ref & result, proof_ref & result_pr) {
SASSERT(f != nullptr);
SASSERT(!m.is_builtin_family_id(f->get_family_id()));
result = nullptr;
result_pr = nullptr;
if (f->get_family_id() == m_fpau.get_family_id() &&
!m_fpau.is_considered_uninterpreted(f, num, args)) {
// cwinter: should this be unreachable?
return BR_FAILED;
}
func_interp * fi = m_model.get_func_interp(f);
func_decl_ref f_ui(m);
if (!fi && m_au.is_considered_uninterpreted(f, num, args, f_ui)) {
if (f_ui) {
fi = m_model.get_func_interp(f_ui);
}
if (!fi) {
result = m_au.mk_numeral(rational(0), f->get_range());
return BR_DONE;
}
}
else if (!fi && m_au.is_considered_partially_interpreted(f, num, args, f_ui)) {
fi = m_model.get_func_interp(f_ui);
if (fi) {
auto interp = fi->get_interp();
if (interp) {
var_subst vs(m, false);
result = vs(fi->get_interp(), num, args);
result = m.mk_ite(m.mk_eq(m_au.mk_real(rational(0)), args[1]), result, m.mk_app(f, num, args));
return BR_DONE;
}
}
}
else if (!fi && m_fpau.is_considered_uninterpreted(f, num, args)) {
result = m.get_some_value(f->get_range());
return BR_DONE;
}
else if (m_dt.is_accessor(f)) {
expr* arg = args[0];
if (m.is_value(arg) && !fi) {
fi = alloc(func_interp, m, f->get_arity());
expr* val = m_model.get_some_value(f->get_range());
fi->set_else(val);
m_model.register_decl(f, fi);
result = val;
return BR_DONE;
}
if (!is_ground(arg)) {
result = m.mk_app(f, num, args);
return BR_DONE;
}
}
if (fi) {
if (fi->is_partial())
fi->set_else(m.get_some_value(f->get_range()));
var_subst vs(m, false);
result = vs(fi->get_interp(), num, args);
if (!is_ground(result.get()) && recfun::util(m).is_defined(f))
return BR_DONE;
return BR_REWRITE_FULL;
}
return BR_FAILED;
}
bool max_steps_exceeded(unsigned num_steps) const {
if (memory::get_allocation_size() > m_max_memory)
throw rewriter_exception(Z3_MAX_MEMORY_MSG);
return num_steps > m_max_steps;
}
br_status mk_array_eq(expr* a, expr* b, expr_ref& result) {
if (a == b) {
result = m.mk_true();
return BR_DONE;
}
if (!m_array_equalities) {
return m_ar_rw.mk_eq_core(a, b, result);
}
TRACE("model_evaluator", tout << "mk_array_eq " << m_array_equalities << " "
<< mk_pp(a, m) << " " << mk_pp(b, m) << "\n";);
vector stores1, stores2;
bool args_are_unique1, args_are_unique2;
expr_ref else1(m), else2(m);
if (extract_array_func_interp(a, stores1, else1, args_are_unique1) &&
extract_array_func_interp(b, stores2, else2, args_are_unique2)) {
expr_ref_vector conj(m), args1(m), args2(m);
if (m.are_equal(else1, else2)) {
// no op
}
else if (m.are_distinct(else1, else2) && !(else1->get_sort()->get_info()->get_num_elements().is_finite())) {
result = m.mk_false();
return BR_DONE;
}
else {
conj.push_back(m.mk_eq(else1, else2));
}
if (args_are_unique1 && args_are_unique2 && !stores1.empty()) {
TRACE("model_evaluator", tout << "args are unique " << conj << "\n";);
return mk_array_eq_core(stores1, else1, stores2, else2, conj, result);
}
// TBD: this is too inefficient.
args1.push_back(a);
args2.push_back(b);
stores1.append(stores2);
for (unsigned i = 0; i < stores1.size(); ++i) {
args1.resize(1); args1.append(stores1[i].size() - 1, stores1[i].data());
args2.resize(1); args2.append(stores1[i].size() - 1, stores1[i].data());
expr_ref s1(m_ar.mk_select(args1.size(), args1.data()), m);
expr_ref s2(m_ar.mk_select(args2.size(), args2.data()), m);
conj.push_back(m.mk_eq(s1, s2));
}
result = mk_and(conj);
TRACE("model_evaluator", tout << mk_pp(a, m) << " == " << mk_pp(b, m) << " -> " << conj << "\n";
for (auto& s : stores1) tout << "store: " << s << "\n"; );
return BR_REWRITE_FULL;
}
return m_ar_rw.mk_eq_core(a, b, result);
}
struct args_eq {
unsigned m_arity;
args_eq(unsigned arity): m_arity(arity) {}
bool operator()(expr * const* args1, expr* const* args2) const {
for (unsigned i = 0; i < m_arity; ++i) {
if (args1[i] != args2[i]) {
return false;
}
}
return true;
}
};
struct args_hash {
unsigned m_arity;
args_hash(unsigned arity): m_arity(arity) {}
unsigned operator()(expr * const* args) const {
return get_composite_hash(args, m_arity, default_kind_hash_proc(), *this);
}
unsigned operator()(expr* const* args, unsigned idx) const {
return args[idx]->hash();
}
};
typedef hashtable args_table;
br_status mk_array_eq_core(vector const& stores1, expr* else1,
vector const& stores2, expr* else2,
expr_ref_vector& conj, expr_ref& result) {
unsigned arity = stores1[0].size()-1; // TBD: fix arity.
args_hash ah(arity);
args_eq ae(arity);
args_table table1(DEFAULT_HASHTABLE_INITIAL_CAPACITY, ah, ae);
args_table table2(DEFAULT_HASHTABLE_INITIAL_CAPACITY, ah, ae);
TRACE("model_evaluator",
tout << "arity " << arity << "\n";
for (auto& v : stores1) tout << "stores1: " << v << "\n";
for (auto& v : stores2) tout << "stores2: " << v << "\n";
tout << "else1: " << mk_pp(else1, m) << "\n";
tout << "else2: " << mk_pp(else2, m) << "\n";
tout << "conj: " << conj << "\n";);
// stores with smaller index take precedence
for (unsigned i = stores1.size(); i-- > 0; ) {
table1.insert(stores1[i].data());
}
for (unsigned i = 0, sz = stores2.size(); i < sz; ++i) {
if (table2.contains(stores2[i].data())) {
// first insertion takes precedence.
TRACE("model_evaluator", tout << "duplicate " << stores2[i] << "\n";);
continue;
}
table2.insert(stores2[i].data());
expr * const* args = nullptr;
expr* val = stores2[i][arity];
if (table1.find(stores2[i].data(), args)) {
TRACE("model_evaluator", tout << "found value " << stores2[i] << "\n";);
table1.remove(args);
switch (compare(args[arity], val)) {
case l_true: break;
case l_false: result = m.mk_false(); return BR_DONE;
default: conj.push_back(m.mk_eq(val, args[arity])); break;
}
}
else {
TRACE("model_evaluator", tout << "not found value " << stores2[i] << "\n";);
switch (compare(else1, val)) {
case l_true: break;
case l_false: result = m.mk_false(); return BR_DONE;
default: conj.push_back(m.mk_eq(else1, val)); break;
}
}
}
for (auto const& t : table1) {
switch (compare((t)[arity], else2)) {
case l_true: break;
case l_false: result = m.mk_false(); return BR_DONE;
default: conj.push_back(m.mk_eq((t)[arity], else2)); break;
}
}
result = mk_and(conj);
return BR_REWRITE_FULL;
}
lbool compare(expr* a, expr* b) {
if (m.are_equal(a, b)) return l_true;
if (m.are_distinct(a, b)) return l_false;
return l_undef;
}
bool args_are_values(expr_ref_vector const& store, bool& are_unique) {
bool are_values = true;
for (unsigned j = 0; are_values && j + 1 < store.size(); ++j) {
are_values = m.is_value(store[j]);
are_unique &= m.is_unique_value(store[j]);
}
SASSERT(!are_unique || are_values);
return are_values;
}
bool extract_array_func_interp(expr* a, vector& stores, expr_ref& else_case, bool& are_unique) {
SASSERT(m_ar.is_array(a));
are_unique = true;
TRACE("model_evaluator", tout << mk_pp(a, m) << "\n";);
while (m_ar.is_store(a)) {
expr_ref_vector store(m);
store.append(to_app(a)->get_num_args()-1, to_app(a)->get_args()+1);
args_are_values(store, are_unique);
stores.push_back(store);
a = to_app(a)->get_arg(0);
}
if (m_ar.is_const(a)) {
else_case = to_app(a)->get_arg(0);
return true;
}
if (m_ar_rw.has_index_set(a, else_case, stores)) {
for (auto const& store : stores)
args_are_values(store, are_unique);
return true;
}
if (!m_ar.is_as_array(a)) {
TRACE("model_evaluator", tout << "no translation: " << mk_pp(a, m) << "\n";);
TRACE("model_evaluator", tout << m_model << "\n";);
return false;
}
func_decl* f = m_ar.get_as_array_func_decl(to_app(a));
func_interp* g = m_model.get_func_interp(f);
if (!g) {
TRACE("model_evaluator", tout << "no interpretation for " << mk_pp(f, m) << "\n";);
return false;
}
else_case = g->get_else();
if (!else_case) {
TRACE("model_evaluator", tout << "no else case " << mk_pp(a, m) << "\n";);
return false;
}
bool ground = is_ground(else_case);
unsigned sz = g->num_entries();
expr_ref_vector store(m);
for (unsigned i = 0; i < sz; ++i) {
store.reset();
func_entry const* fe = g->get_entry(i);
expr* res = fe->get_result();
if (m.are_equal(else_case, res)) {
continue;
}
ground &= is_ground(res);
store.append(g->get_arity(), fe->get_args());
store.push_back(res);
for (expr* arg : store) {
ground &= is_ground(arg);
}
stores.push_back(store);
}
if (!ground) {
TRACE("model_evaluator", tout << "could not extract ground array interpretation: " << mk_pp(a, m) << "\n";);
return false;
}
return true;
}
};
}
struct model_evaluator::imp : public rewriter_tpl {
mev::evaluator_cfg m_cfg;
imp(model_core & md, params_ref const & p):
rewriter_tpl(md.get_manager(),
false, // no proofs for evaluator
m_cfg),
m_cfg(md.get_manager(), md, p) {
}
void expand_stores(expr_ref &val) {m_cfg.expand_stores(val);}
void reset() {
rewriter_tpl::reset();
m_cfg.reset();
m_cfg.m_def_cache.reset();
}
};
model_evaluator::model_evaluator(model_core & md, params_ref const & p) {
m_imp = alloc(imp, md, p);
}
ast_manager & model_evaluator::m() const {
return m_imp->m();
}
model_evaluator::~model_evaluator() {
dealloc(m_imp);
}
void model_evaluator::updt_params(params_ref const & p) {
m_imp->cfg().updt_params(p);
}
void model_evaluator::get_param_descrs(param_descrs & r) {
model_evaluator_params::collect_param_descrs(r);
}
void model_evaluator::set_model_completion(bool f) {
if (m_imp->cfg().m_model_completion != f) {
reset();
m_imp->cfg().m_model_completion = f;
}
}
bool model_evaluator::get_model_completion() const {
return m_imp->cfg().m_model_completion;
}
void model_evaluator::set_expand_array_equalities(bool f) {
m_imp->cfg().m_array_equalities = f;
}
unsigned model_evaluator::get_num_steps() const {
return m_imp->get_num_steps();
}
void model_evaluator::cleanup(params_ref const & p) {
model_core & md = m_imp->cfg().m_model;
m_imp->~imp();
new (m_imp) imp(md, p);
}
void model_evaluator::reset(params_ref const & p) {
m_imp->reset();
updt_params(p);
}
void model_evaluator::reset(model_core &model, params_ref const& p) {
m_imp->~imp();
new (m_imp) imp(model, p);
}
void model_evaluator::operator()(expr * t, expr_ref & result) {
TRACE("model_evaluator", tout << mk_ismt2_pp(t, m()) << "\n";);
m_imp->operator()(t, result);
m_imp->expand_stores(result);
TRACE("model_evaluator", tout << "eval: " << mk_ismt2_pp(t, m()) << " --> " << result << "\n";);
}
expr_ref model_evaluator::operator()(expr * t) {
expr_ref result(m());
this->operator()(t, result);
return result;
}
expr_ref_vector model_evaluator::operator()(expr_ref_vector const& ts) {
expr_ref_vector rs(m());
for (expr* t : ts) rs.push_back((*this)(t));
return rs;
}
bool model_evaluator::is_true(expr* t) {
expr_ref tmp(m());
return eval(t, tmp, true) && m().is_true(tmp);
}
bool model_evaluator::is_false(expr* t) {
expr_ref tmp(m());
return eval(t, tmp, true) && m().is_false(tmp);
}
bool model_evaluator::is_true(expr_ref_vector const& ts) {
for (expr* t : ts) if (!is_true(t)) return false;
return true;
}
bool model_evaluator::are_equal(expr* s, expr* t) {
if (m().are_equal(s, t)) return true;
if (m().are_distinct(s, t)) return false;
expr_ref t1(m()), t2(m());
eval(t, t1, true);
eval(s, t2, true);
return m().are_equal(t1, t2);
}
bool model_evaluator::eval(expr* t, expr_ref& r, bool model_completion) {
set_model_completion(model_completion);
try {
r = (*this)(t);
return true;
}
catch (model_evaluator_exception &ex) {
(void)ex;
TRACE("model_evaluator", tout << ex.msg () << "\n";);
return false;
}
}
bool model_evaluator::eval(expr_ref_vector const& ts, expr_ref& r, bool model_completion) {
expr_ref tmp(m());
tmp = mk_and(ts);
return eval(tmp, r, model_completion);
}
void model_evaluator::set_solver(expr_solver* solver) {
m_imp->m_cfg.m_seq_rw.set_solver(solver);
}
bool model_evaluator::has_solver() {
return m_imp->m_cfg.m_seq_rw.has_solver();
}
model_core const & model_evaluator::get_model() const {
return m_imp->cfg().m_model;
}