z3-z3-4.13.0.src.muz.base.dl_context.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
dl_context.cpp
Abstract:
Author:
Leonardo de Moura (leonardo) 2010-05-18.
Revision History:
--*/
#include
#include
#include
#include "ast/arith_decl_plugin.h"
#include "ast/bv_decl_plugin.h"
#include "ast/for_each_expr.h"
#include "ast/ast_smt_pp.h"
#include "ast/ast_smt2_pp.h"
#include "ast/datatype_decl_plugin.h"
#include "ast/scoped_proof.h"
#include "ast/ast_pp_util.h"
#include "ast/ast_util.h"
#include "muz/base/dl_context.h"
#include "muz/base/fp_params.hpp"
namespace datalog {
// -----------------------------------
//
// context::sort_domain
//
// -----------------------------------
class context::sort_domain {
private:
sort_kind m_kind;
protected:
sort_ref m_sort;
bool m_limited_size;
uint64_t m_size;
sort_domain(sort_kind k, context & ctx, sort * s)
: m_kind(k), m_sort(s, ctx.get_manager()) {
m_limited_size = ctx.get_decl_util().try_get_size(s, m_size);
}
public:
virtual ~sort_domain() = default;
sort_kind get_kind() const { return m_kind; }
virtual unsigned get_constant_count() const = 0;
virtual void print_element(finite_element el_num, std::ostream & out) = 0;
};
class context::symbol_sort_domain : public sort_domain {
typedef map sym2num;
typedef svector num2sym;
sym2num m_el_numbers;
num2sym m_el_names;
public:
symbol_sort_domain(context & ctx, sort * s) : sort_domain(SK_SYMBOL, ctx, s) {}
finite_element get_number(symbol sym) {
//we number symbols starting from zero, so table->size() is equal to the
//index of the symbol to be added next
unsigned newIdx = m_el_numbers.size();
unsigned idx = m_el_numbers.insert_if_not_there(sym, newIdx);
if (idx==newIdx) {
m_el_names.push_back(sym);
SASSERT(m_el_names.size()==m_el_numbers.size());
}
if (m_limited_size && idx>=m_size) {
std::stringstream sstm;
sstm << "sort " << m_sort->get_name() << " contains more constants than its declared size " << m_size;
throw default_exception(sstm.str());
}
return idx;
}
unsigned get_constant_count() const override {
return m_el_names.size();
}
void print_element(finite_element el_num, std::ostream & out) override {
if (el_num>=m_el_names.size()) {
out << el_num;
return;
}
out << m_el_names[el_num];
}
};
class context::uint64_sort_domain : public sort_domain {
typedef map > el2num;
typedef svector num2el;
el2num m_el_numbers;
num2el m_el_names;
public:
uint64_sort_domain(context & ctx, sort * s) : sort_domain(SK_UINT64, ctx, s) {}
finite_element get_number(uint64_t el) {
//we number symbols starting from zero, so table->size() is equal to the
//index of the symbol to be added next
unsigned newIdx = m_el_numbers.size();
unsigned idx = m_el_numbers.insert_if_not_there(el, newIdx);
if (idx == newIdx) {
m_el_names.push_back(el);
SASSERT(m_el_names.size()==m_el_numbers.size());
}
if (m_limited_size && idx>=m_size) {
std::stringstream sstm;
sstm << "sort " << m_sort->get_name() << " contains more constants than its declared size " << m_size;
throw default_exception(sstm.str());
}
return idx;
}
unsigned get_constant_count() const override {
return m_el_names.size();
}
void print_element(finite_element el_num, std::ostream & out) override {
if (el_num >= m_el_names.size()) {
out << "get_name() << ":" << el_num << '>';
return;
}
out << m_el_names[el_num];
}
};
// -----------------------------------
//
// trail stack for restoring rules
//
// -----------------------------------
class context::restore_rules : public trail {
context& ctx;
rule_set* m_old_rules;
void reset() {
dealloc(m_old_rules);
m_old_rules = nullptr;
}
public:
restore_rules(context& ctx, rule_set& r): ctx(ctx), m_old_rules(alloc(rule_set, r)) {}
void undo() override {
ctx.replace_rules(*m_old_rules);
reset();
}
};
template
class restore_vec_size_trail : public trail {
Vec& m_vector;
unsigned m_old_size;
public:
restore_vec_size_trail(Vec& v): m_vector(v), m_old_size(v.size()) {}
void undo() override { m_vector.shrink(m_old_size); }
};
void context::push() {
m_trail.push_scope();
m_trail.push(restore_rules(*this, m_rule_set));
m_trail.push(restore_vec_size_trail(m_rule_fmls));
m_trail.push(restore_vec_size_trail(m_background));
}
void context::pop() {
if (m_trail.get_num_scopes() == 0) {
throw default_exception("there are no backtracking points to pop to");
}
throw default_exception("pop operation is not supported");
m_trail.pop_scope(1);
}
// -----------------------------------
//
// context
//
// -----------------------------------
context::context(ast_manager & m, register_engine_base& re, smt_params& fp, params_ref const& pa):
m(m),
m_register_engine(re),
m_fparams(fp),
m_params_ref(pa),
m_params(alloc(fp_params, m_params_ref)),
m_decl_util(m),
m_rewriter(m),
m_var_subst(m),
m_rule_manager(*this),
m_contains_p(*this),
m_rule_properties(m, m_rule_manager, *this, m_contains_p),
m_transf(*this),
m_trail(),
m_pinned(m),
m_bind_variables(m),
m_rule_set(*this),
m_transformed_rule_set(*this),
m_rule_fmls_head(0),
m_rule_fmls(m),
m_background(m),
m_mc(nullptr),
m_rel(nullptr),
m_engine(nullptr),
m_closed(false),
m_saturation_was_run(false),
m_enable_bind_variables(true),
m_last_status(OK),
m_last_answer(m),
m_last_ground_answer(m),
m_engine_type(LAST_ENGINE) {
re.set_context(this);
updt_params(pa);
}
context::~context() {
reset();
dealloc(m_params);
}
void context::reset() {
m_trail.reset();
m_rule_set.reset();
m_rule_fmls_head = 0;
m_rule_fmls.reset();
m_rule_names.reset();
m_rule_bounds.reset();
m_argument_var_names.reset();
m_preds.reset();
m_preds_by_name.reset();
reset_dealloc_values(m_sorts);
m_engine = nullptr;
m_rel = nullptr;
}
bool context::is_fact(app * head) const {
return m_rule_manager.is_fact(head);
}
bool context::has_sort_domain(relation_sort s) const {
return m_sorts.contains(s);
}
context::sort_domain & context::get_sort_domain(relation_sort s) {
return *m_sorts.find(s);
}
const context::sort_domain & context::get_sort_domain(relation_sort s) const {
return *m_sorts.find(s);
}
bool context::generate_proof_trace() const { return m_generate_proof_trace; }
bool context::output_profile() const { return m_params->datalog_output_profile(); }
bool context::output_tuples() const { return m_params->datalog_print_tuples(); }
bool context::use_map_names() const { return m_params->datalog_use_map_names(); }
bool context::fix_unbound_vars() const { return m_params->xform_fix_unbound_vars(); }
symbol context::default_table() const { return m_params->datalog_default_table(); }
symbol context::default_relation() const { return m_default_relation; }
void context::set_default_relation(symbol const& s) { m_default_relation = s; }
symbol context::print_aig() const { return m_params->print_aig(); }
symbol context::check_relation() const { return m_params->datalog_check_relation(); }
symbol context::default_table_checker() const { return m_params->datalog_default_table_checker(); }
bool context::default_table_checked() const { return m_params->datalog_default_table_checked(); }
bool context::dbg_fpr_nonempty_relation_signature() const { return m_params->datalog_dbg_fpr_nonempty_relation_signature(); }
unsigned context::dl_profile_milliseconds_threshold() const { return m_params->datalog_profile_timeout_milliseconds(); }
bool context::all_or_nothing_deltas() const { return m_params->datalog_all_or_nothing_deltas(); }
bool context::compile_with_widening() const { return m_params->datalog_compile_with_widening(); }
bool context::unbound_compressor() const { return m_unbound_compressor; }
void context::set_unbound_compressor(bool f) { m_unbound_compressor = f; }
unsigned context::soft_timeout() const { return m_params->datalog_timeout(); }
bool context::similarity_compressor() const { return m_params->datalog_similarity_compressor(); }
unsigned context::similarity_compressor_threshold() const { return m_params->datalog_similarity_compressor_threshold(); }
unsigned context::initial_restart_timeout() const { return m_params->datalog_initial_restart_timeout(); }
bool context::generate_explanations() const { return m_params->datalog_generate_explanations(); }
bool context::explanations_on_relation_level() const { return m_params->datalog_explanations_on_relation_level(); }
bool context::magic_sets_for_queries() const { return m_params->datalog_magic_sets_for_queries(); }
symbol context::tab_selection() const { return m_params->tab_selection(); }
bool context::xform_coi() const { return m_params->xform_coi(); }
bool context::xform_slice() const { return m_params->xform_slice(); }
bool context::xform_bit_blast() const { return m_params->xform_bit_blast(); }
bool context::karr() const { return false; }
bool context::scale() const { return m_params->xform_scale(); }
bool context::magic() const { return m_params->xform_magic(); }
bool context::compress_unbound() const { return m_params->xform_compress_unbound(); }
bool context::quantify_arrays() const { return m_params->xform_quantify_arrays(); }
bool context::instantiate_quantifiers() const { return m_params->xform_instantiate_quantifiers(); }
bool context::array_blast() const { return m_params->xform_array_blast(); }
bool context::array_blast_full() const { return m_params->xform_array_blast_full(); }
bool context::elim_term_ite() const {return m_params->xform_elim_term_ite();}
unsigned context::blast_term_ite_inflation() const {
return m_params->xform_elim_term_ite_inflation();
}
void context::register_finite_sort(sort * s, sort_kind k) {
m_pinned.push_back(s);
SASSERT(!m_sorts.contains(s));
sort_domain * dom;
switch (k) {
case SK_SYMBOL:
dom = alloc(symbol_sort_domain, *this, s);
break;
case SK_UINT64:
dom = alloc(uint64_sort_domain, *this, s);
break;
default:
UNREACHABLE();
}
m_sorts.insert(s, dom);
}
void context::register_variable(func_decl* var) {
m_bind_variables.add_var(m.mk_const(var));
}
expr_ref context::bind_vars(expr* fml, bool is_forall) {
if (m_enable_bind_variables) {
return m_bind_variables(fml, is_forall);
}
else {
return expr_ref(fml, m);
}
}
void context::register_predicate(func_decl * decl, bool named) {
if (!is_predicate(decl)) {
m_pinned.push_back(decl);
m_preds.insert(decl);
TRACE("dl", tout << mk_pp(decl, m) << "\n";);
if (named) {
m_preds_by_name.insert(decl->get_name(), decl);
}
}
}
void context::restrict_predicates(func_decl_set const& preds) {
m_preds.reset();
for (func_decl* p : preds) {
TRACE("dl", tout << mk_pp(p, m) << "\n";);
m_preds.insert(p);
}
}
context::finite_element context::get_constant_number(relation_sort srt, symbol sym) {
sort_domain & dom0 = get_sort_domain(srt);
SASSERT(dom0.get_kind() == SK_SYMBOL);
symbol_sort_domain & dom = static_cast(dom0);
return dom.get_number(sym);
}
context::finite_element context::get_constant_number(relation_sort srt, uint64_t el) {
sort_domain & dom0 = get_sort_domain(srt);
if (dom0.get_kind() == SK_SYMBOL)
return (finite_element)(el);
else {
uint64_sort_domain & dom = static_cast(dom0);
return dom.get_number(el);
}
}
void context::print_constant_name(relation_sort srt, uint64_t num, std::ostream & out)
{
if (has_sort_domain(srt)) {
SASSERT(num<=UINT_MAX);
get_sort_domain(srt).print_element(static_cast(num), out);
}
else {
out << num;
}
}
bool context::try_get_sort_constant_count(relation_sort srt, uint64_t & constant_count) {
if (!has_sort_domain(srt)) {
return false;
}
constant_count = get_sort_domain(srt).get_constant_count();
return true;
}
uint64_t context::get_sort_size_estimate(relation_sort srt) {
if (get_decl_util().is_rule_sort(srt)) {
return 1;
}
uint64_t res;
if (!try_get_sort_constant_count(srt, res)) {
const sort_size & sz = srt->get_num_elements();
if (sz.is_finite()) {
res = sz.size();
}
else {
res = std::numeric_limits::max();
}
}
return res;
}
void context::set_argument_names(const func_decl * pred, const svector & var_names)
{
SASSERT(!m_argument_var_names.contains(pred));
m_argument_var_names.insert(pred, var_names);
}
symbol context::get_argument_name(const func_decl * pred, unsigned arg_index)
{
pred2syms::obj_map_entry * e = m_argument_var_names.find_core(pred);
if (!e) {
std::stringstream name_stm;
name_stm << '#' << arg_index;
return symbol(name_stm.str());
}
SASSERT(arg_index < e->get_data().m_value.size());
return e->get_data().m_value[arg_index];
}
void context::set_predicate_representation(func_decl * pred, unsigned relation_name_cnt,
symbol const * relation_names) {
if (relation_name_cnt > 0) {
ensure_engine();
}
if (relation_name_cnt > 0 && m_rel) {
m_rel->set_predicate_representation(pred, relation_name_cnt, relation_names);
}
}
func_decl * context::mk_fresh_head_predicate(symbol const & prefix, symbol const & suffix,
unsigned arity, sort * const * domain, func_decl* orig_pred) {
func_decl* new_pred =
m.mk_fresh_func_decl(prefix, suffix, arity, domain, m.mk_bool_sort());
register_predicate(new_pred, true);
if (m_rel) {
m_rel->inherit_predicate_kind(new_pred, orig_pred);
}
return new_pred;
}
void context::add_rule(expr* rl, symbol const& name, unsigned bound) {
SASSERT(rl);
m_rule_fmls.push_back(rl);
m_rule_names.push_back(name);
m_rule_bounds.push_back(bound);
}
void context::flush_add_rules() {
datalog::rule_manager& rm = get_rule_manager();
scoped_proof_mode _scp(m, generate_proof_trace()?PGM_ENABLED:PGM_DISABLED);
while (m_rule_fmls_head < m_rule_fmls.size()) {
expr* fml = m_rule_fmls[m_rule_fmls_head].get();
proof* p = generate_proof_trace()?m.mk_asserted(fml):nullptr;
rm.mk_rule(fml, p, m_rule_set, m_rule_names[m_rule_fmls_head]);
++m_rule_fmls_head;
}
check_rules(m_rule_set);
}
//
// Update a rule with a new.
// It requires basic subsumption.
//
void context::update_rule(expr* rl, symbol const& name) {
datalog::rule_manager& rm = get_rule_manager();
proof* p = nullptr;
if (generate_proof_trace()) {
p = m.mk_asserted(rl);
}
unsigned size_before = m_rule_set.get_num_rules();
rm.mk_rule(rl, p, m_rule_set, name);
unsigned size_after = m_rule_set.get_num_rules();
if (size_before + 1 != size_after) {
std::stringstream strm;
strm << "Rule " << name << " has a non-trivial body. It cannot be modified";
throw default_exception(strm.str());
}
// The new rule is inserted last:
rule_ref r(m_rule_set.get_rule(size_before), rm);
rule_ref_vector const& rls = m_rule_set.get_rules();
rule* old_rule = nullptr;
for (unsigned i = 0; i < size_before; ++i) {
if (rls[i]->name() == name) {
if (old_rule) {
std::stringstream strm;
strm << "Rule " << name << " occurs twice. It cannot be modified";
m_rule_set.del_rule(r);
throw default_exception(strm.str());
}
old_rule = rls[i];
}
}
if (old_rule) {
if (!check_subsumes(*old_rule, *r)) {
std::stringstream strm;
strm << "Old rule ";
old_rule->display(*this, strm);
strm << "does not subsume new rule ";
r->display(*this, strm);
m_rule_set.del_rule(r);
throw default_exception(strm.str());
}
m_rule_set.del_rule(old_rule);
}
}
bool context::check_subsumes(rule const& stronger_rule, rule const& weaker_rule) {
if (stronger_rule.get_head() != weaker_rule.get_head()) {
return false;
}
for (unsigned i = 0; i < stronger_rule.get_tail_size(); ++i) {
app* t = stronger_rule.get_tail(i);
bool found = false;
for (unsigned j = 0; j < weaker_rule.get_tail_size(); ++j) {
app* s = weaker_rule.get_tail(j);
if (s == t) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
return true;
}
unsigned context::get_num_levels(func_decl* pred) {
ensure_engine();
return m_engine->get_num_levels(pred);
}
expr_ref context::get_cover_delta(int level, func_decl* pred) {
ensure_engine();
return m_engine->get_cover_delta(level, pred);
}
expr_ref context::get_reachable(func_decl *pred) {
ensure_engine();
return m_engine->get_reachable(pred);
}
void context::add_cover(int level, func_decl* pred, expr* property) {
ensure_engine();
m_engine->add_cover(level, pred, property);
}
void context::add_invariant(func_decl* pred, expr *property)
{
ensure_engine();
m_engine->add_invariant(pred, property);
}
void context::check_rules(rule_set& r) {
m_rule_properties.set_generate_proof(generate_proof_trace());
TRACE("dl", m_rule_set.display(tout););
switch(get_engine()) {
case DATALOG_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_quantifier_free();
m_rule_properties.check_uninterpreted_free();
m_rule_properties.check_nested_free();
m_rule_properties.check_infinite_sorts();
m_rule_properties.check_background_free();
break;
case SPACER_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_existential_tail();
m_rule_properties.check_for_negated_predicates();
m_rule_properties.check_uninterpreted_free();
m_rule_properties.check_quantifier_free(exists_k);
m_rule_properties.check_background_free();
break;
case BMC_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_for_negated_predicates();
break;
case QBMC_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_existential_tail();
m_rule_properties.check_for_negated_predicates();
break;
case TAB_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_existential_tail();
m_rule_properties.check_for_negated_predicates();
m_rule_properties.check_background_free();
break;
case CLP_ENGINE:
m_rule_properties.collect(r);
m_rule_properties.check_existential_tail();
m_rule_properties.check_for_negated_predicates();
m_rule_properties.check_background_free();
break;
case DDNF_ENGINE:
m_rule_properties.check_background_free();
break;
case LAST_ENGINE:
default:
UNREACHABLE();
break;
}
}
void context::add_rule(rule_ref& r) {
m_rule_set.add_rule(r);
}
void context::add_fact(func_decl * pred, const relation_fact & fact) {
if (get_engine() == DATALOG_ENGINE) {
ensure_engine();
m_rel->add_fact(pred, fact);
}
else {
expr_ref rule(m.mk_app(pred, fact.size(), (expr*const*)fact.data()), m);
add_rule(rule, symbol::null);
}
}
void context::add_fact(app * head) {
SASSERT(is_fact(head));
relation_fact fact(get_manager());
unsigned n = head->get_num_args();
for (unsigned i = 0; i < n; i++) {
fact.push_back(to_app(head->get_arg(i)));
}
add_fact(head->get_decl(), fact);
}
bool context::has_facts(func_decl * pred) const {
return m_rel && m_rel->has_facts(pred);
}
void context::add_table_fact(func_decl * pred, const table_fact & fact) {
if (!is_uninterp(pred)) {
std::stringstream strm;
strm << "Predicate " << pred->get_name() << " when used for facts should be uninterpreted";
throw default_exception(strm.str());
}
if (get_engine() == DATALOG_ENGINE) {
ensure_engine();
m_rel->add_fact(pred, fact);
}
else {
relation_fact rfact(m);
for (unsigned i = 0; i < fact.size(); ++i) {
rfact.push_back(m_decl_util.mk_numeral(fact[i], pred->get_domain()[i]));
}
add_fact(pred, rfact);
}
}
void context::add_table_fact(func_decl * pred, unsigned num_args, unsigned args[]) {
if (pred->get_arity() != num_args) {
std::ostringstream out;
out << "mismatched number of arguments passed to " << mk_ismt2_pp(pred, m) << " " << num_args << " passed";
throw default_exception(out.str());
}
table_fact fact;
for (unsigned i = 0; i < num_args; ++i) {
fact.push_back(args[i]);
}
add_table_fact(pred, fact);
}
void context::close() {
SASSERT(!m_closed);
if (!m_rule_set.close()) {
throw default_exception("Negation is not stratified!");
}
m_closed = true;
}
void context::ensure_closed() {
if (!m_closed) {
close();
}
}
void context::ensure_opened() {
if (m_closed) {
reopen();
}
}
void context::reopen() {
SASSERT(m_closed);
m_rule_set.reopen();
m_closed = false;
}
void context::transform_rules(rule_transformer::plugin* plugin) {
flet _enable_bv(m_enable_bind_variables, false);
rule_transformer transformer(*this);
transformer.register_plugin(plugin);
transform_rules(transformer);
}
void context::transform_rules(rule_transformer& transf) {
SASSERT(m_closed); //we must finish adding rules before we start transforming them
TRACE("dl", display_rules(tout););
if (transf(m_rule_set)) {
//we have already ensured the negation is stratified and transformations
//should not break the stratification
m_rule_set.ensure_closed();
TRACE("dl", display_rules(tout););
TRACE("dl_verbose", display(tout););
}
}
void context::replace_rules(rule_set const & rs) {
SASSERT(!m_closed);
m_rule_set.replace_rules(rs);
if (m_rel) {
m_rel->restrict_predicates(get_predicates());
}
}
void context::record_transformed_rules() {
m_transformed_rule_set.replace_rules(m_rule_set);
}
void context::apply_default_transformation() {
}
void context::collect_params(param_descrs& p) {
fp_params::collect_param_descrs(p);
insert_timeout(p);
insert_ctrl_c(p);
}
void context::updt_params(params_ref const& p) {
m_params_ref.copy(p);
if (m_engine.get()) m_engine->updt_params();
m_generate_proof_trace = m_params->generate_proof_trace();
m_unbound_compressor = m_params->datalog_unbound_compressor();
m_default_relation = m_params->datalog_default_relation();
}
expr_ref context::get_background_assertion() {
return mk_and(m_background);
}
void context::assert_expr(expr* e) {
TRACE("dl", tout << mk_ismt2_pp(e, m) << "\n";);
m_background.push_back(e);
}
void context::cleanup() {
m_last_status = OK;
if (m_engine) m_engine->cleanup();
}
class context::engine_type_proc {
ast_manager& m;
arith_util a;
datatype_util dt;
bv_util bv;
array_util ar;
DL_ENGINE m_engine_type;
bool is_large_bv(sort* s) {
return false;
}
public:
engine_type_proc(ast_manager& m): m(m), a(m), dt(m), bv(m), ar(m), m_engine_type(DATALOG_ENGINE) {}
DL_ENGINE get_engine() const { return m_engine_type; }
void operator()(expr* e) {
if (a.is_int_real(e)) {
m_engine_type = SPACER_ENGINE;
}
else if (is_var(e) && m.is_bool(e)) {
m_engine_type = SPACER_ENGINE;
}
else if (dt.is_datatype(e->get_sort())) {
m_engine_type = SPACER_ENGINE;
}
else if (is_large_bv(e->get_sort())) {
m_engine_type = SPACER_ENGINE;
}
else if (!e->get_sort()->get_num_elements().is_finite()) {
m_engine_type = SPACER_ENGINE;
}
else if (ar.is_array(e)) {
m_engine_type = SPACER_ENGINE;
}
}
};
void context::configure_engine(expr* q) {
TRACE("dl", tout << mk_pp(q, m) << " " << m_engine_type << "\n";);
if (m_engine_type != LAST_ENGINE) {
return;
}
symbol e = m_params->engine();
if (e == symbol("datalog")) {
m_engine_type = DATALOG_ENGINE;
}
else if (e == symbol("spacer")) {
m_engine_type = SPACER_ENGINE;
}
else if (e == symbol("bmc")) {
m_engine_type = BMC_ENGINE;
}
else if (e == symbol("qbmc")) {
m_engine_type = QBMC_ENGINE;
}
else if (e == symbol("tab")) {
m_engine_type = TAB_ENGINE;
}
else if (e == symbol("clp")) {
m_engine_type = CLP_ENGINE;
}
else if (e == symbol("ddnf")) {
m_engine_type = DDNF_ENGINE;
}
else if (e == symbol("auto-config")) {
}
else {
throw default_exception("unsupported datalog engine type");
}
if (m_engine_type == LAST_ENGINE) {
expr_fast_mark1 mark;
engine_type_proc proc(m);
m_engine_type = DATALOG_ENGINE;
if (q) {
quick_for_each_expr(proc, mark, q);
m_engine_type = proc.get_engine();
}
for (unsigned i = 0; m_engine_type == DATALOG_ENGINE && i < m_rule_set.get_num_rules(); ++i) {
rule * r = m_rule_set.get_rule(i);
quick_for_each_expr(proc, mark, r->get_head());
for (unsigned j = 0; j < r->get_tail_size(); ++j) {
quick_for_each_expr(proc, mark, r->get_tail(j));
}
m_engine_type = proc.get_engine();
}
for (unsigned i = m_rule_fmls_head; m_engine_type == DATALOG_ENGINE && i < m_rule_fmls.size(); ++i) {
expr* fml = m_rule_fmls[i].get();
while (is_quantifier(fml)) {
fml = to_quantifier(fml)->get_expr();
}
quick_for_each_expr(proc, mark, fml);
m_engine_type = proc.get_engine();
}
}
}
lbool context::query(expr* query) {
expr_ref _query(query, m);
m_mc = mk_skip_model_converter();
m_last_status = OK;
m_last_answer = nullptr;
m_last_ground_answer = nullptr;
switch (get_engine(query)) {
case DATALOG_ENGINE:
case SPACER_ENGINE:
case BMC_ENGINE:
case QBMC_ENGINE:
case TAB_ENGINE:
case CLP_ENGINE:
case DDNF_ENGINE:
flush_add_rules();
break;
default:
UNREACHABLE();
}
ensure_engine(query);
lbool r = m_engine->query(query);
if (r != l_undef && get_params().print_certificate()) {
display_certificate(std::cout) << "\n";
}
return r;
}
bool context::is_monotone() {
// assumes flush_add_rules was called
return m_rule_properties.is_monotone();
}
lbool context::query_from_lvl (expr* query, unsigned lvl) {
m_mc = mk_skip_model_converter();
m_last_status = OK;
m_last_answer = nullptr;
m_last_ground_answer = nullptr;
switch (get_engine()) {
case DATALOG_ENGINE:
case SPACER_ENGINE:
case BMC_ENGINE:
case QBMC_ENGINE:
case TAB_ENGINE:
case CLP_ENGINE:
flush_add_rules();
break;
default:
UNREACHABLE();
}
ensure_engine();
return m_engine->query_from_lvl (query, lvl);
}
model_ref context::get_model() {
ensure_engine();
return m_engine->get_model();
}
proof_ref context::get_proof() {
ensure_engine();
return m_engine->get_proof();
}
void context::ensure_engine(expr* e) {
if (!m_engine.get()) {
m_engine = m_register_engine.mk_engine(get_engine(e));
m_engine->updt_params();
// break abstraction.
if (get_engine() == DATALOG_ENGINE) {
m_rel = dynamic_cast(m_engine.get());
}
}
}
lbool context::rel_query(unsigned num_rels, func_decl * const* rels) {
m_last_answer = nullptr;
ensure_engine();
return m_engine->query(num_rels, rels);
}
expr* context::get_answer_as_formula() {
if (m_last_answer) {
return m_last_answer.get();
}
ensure_engine();
m_last_answer = m_engine->get_answer();
return m_last_answer.get();
}
expr* context::get_ground_sat_answer () {
if (m_last_ground_answer) {
return m_last_ground_answer;
}
ensure_engine ();
m_last_ground_answer = m_engine->get_ground_sat_answer ();
return m_last_ground_answer;
}
void context::get_rules_along_trace (rule_ref_vector& rules) {
ensure_engine ();
m_engine->get_rules_along_trace (rules);
}
void context::get_rules_along_trace_as_formulas (expr_ref_vector& rules, svector& names) {
rule_manager& rm = get_rule_manager ();
rule_ref_vector rv (rm);
get_rules_along_trace (rv);
expr_ref fml (m);
for (auto* r : rv) {
m_rule_manager.to_formula (*r, fml);
rules.push_back (fml);
// The concatenated names are already stored last-first, so do not need to be reversed here
const symbol& rule_name = r->name();
names.push_back (rule_name);
TRACE ("dl",
if (rule_name == symbol::null) {
tout << "Encountered unnamed rule: ";
r->display(*this, tout);
tout << "\n";
});
}
}
std::ostream& context::display_certificate(std::ostream& out) {
ensure_engine();
m_engine->display_certificate(out);
return out;
}
void context::display(std::ostream & out) const {
display_rules(out);
if (m_rel) m_rel->display_facts(out);
}
void context::display_profile(std::ostream& out) const {
out << "\n---------------\n";
out << "Original rules\n";
display_rules(out);
out << "\n---------------\n";
out << "Transformed rules\n";
m_transformed_rule_set.display(out);
if (m_rel) {
m_rel->display_profile(out);
}
}
void context::reset_statistics() {
if (m_engine) {
m_engine->reset_statistics();
}
}
void context::collect_statistics(statistics& st) const {
if (m_engine) {
m_engine->collect_statistics(st);
}
get_memory_statistics(st);
get_rlimit_statistics(m.limit(), st);
}
execution_result context::get_status() { return m_last_status; }
bool context::result_contains_fact(relation_fact const& f) {
return m_rel && m_rel->result_contains_fact(f);
}
// NB: algebraic data-types declarations will not be printed.
static void collect_free_funcs(unsigned sz, expr* const* exprs,
ast_pp_util& v,
mk_fresh_name& fresh_names) {
v.collect(sz, exprs);
for (unsigned i = 0; i < sz; ++i) {
expr* e = exprs[i];
while (is_quantifier(e)) {
e = to_quantifier(e)->get_expr();
}
fresh_names.add(e);
}
}
void context::get_raw_rule_formulas(expr_ref_vector& rules, svector& names, unsigned_vector &bounds) {
for (unsigned i = 0; i < m_rule_fmls.size(); ++i) {
expr_ref r = bind_vars(m_rule_fmls[i].get(), true);
rules.push_back(r.get());
names.push_back(m_rule_names[i]);
bounds.push_back(m_rule_bounds[i]);
}
}
void context::get_rules_as_formulas(expr_ref_vector& rules, expr_ref_vector& queries, svector& names) {
expr_ref fml(m);
rule_manager& rm = get_rule_manager();
// ensure that rules are all using bound variables.
for (unsigned i = m_rule_fmls_head; i < m_rule_fmls.size(); ++i) {
m_free_vars(m_rule_fmls[i].get());
if (!m_free_vars.empty()) {
rm.mk_rule(m_rule_fmls[i].get(), nullptr, m_rule_set, m_rule_names[i]);
m_rule_fmls[i] = m_rule_fmls.back();
m_rule_names[i] = m_rule_names.back();
m_rule_fmls.pop_back();
m_rule_names.pop_back();
m_rule_bounds.pop_back();
--i;
}
}
for (rule* r : m_rule_set) {
rm.to_formula(*r, fml);
func_decl* h = r->get_decl();
if (m_rule_set.is_output_predicate(h)) {
expr* body = fml;
expr* e2;
if (is_quantifier(body)) {
quantifier* q = to_quantifier(body);
expr* e = q->get_expr();
if (m.is_implies(e, body, e2)) {
fml = m.mk_quantifier(exists_k, q->get_num_decls(),
q->get_decl_sorts(), q->get_decl_names(),
body);
}
else {
fml = body;
}
}
else {
fml = body;
if (m.is_implies(body, body, e2)) {
fml = body;
}
}
queries.push_back(fml);
}
else {
rules.push_back(fml);
names.push_back(r->name());
}
}
for (unsigned i = m_rule_fmls_head; i < m_rule_fmls.size(); ++i) {
rules.push_back(m_rule_fmls[i].get());
names.push_back(m_rule_names[i]);
}
}
static std::ostream& display_symbol(std::ostream& out, symbol const& nm) {
if (is_smt2_quoted_symbol(nm)) {
out << mk_smt2_quoted_symbol(nm);
}
else {
out << nm;
}
return out;
}
void context::display_smt2(unsigned num_queries, expr* const* qs, std::ostream& out) {
ast_manager& m = get_manager();
ast_pp_util visitor(m);
func_decl_set rels;
unsigned num_axioms = m_background.size();
expr* const* axioms = m_background.data();
expr_ref fml(m);
expr_ref_vector rules(m), queries(m);
svector names;
bool use_fixedpoint_extensions = m_params->print_fixedpoint_extensions();
bool print_low_level = m_params->print_low_level_smt2();
bool do_declare_vars = m_params->print_with_variable_declarations();
#define PP(_e_) if (print_low_level) out << mk_smt_pp(_e_, m); else ast_smt2_pp(out, _e_, env);
get_rules_as_formulas(rules, queries, names);
queries.append(num_queries, qs);
smt2_pp_environment_dbg env(m);
mk_fresh_name fresh_names;
collect_free_funcs(num_axioms, axioms, visitor, fresh_names);
collect_free_funcs(rules.size(), rules.data(), visitor, fresh_names);
collect_free_funcs(queries.size(), queries.data(), visitor, fresh_names);
func_decl_set funcs;
unsigned sz = visitor.coll.get_num_decls();
for (unsigned i = 0; i < sz; ++i) {
func_decl* f = visitor.coll.get_func_decls()[i];
if (f->get_family_id() != null_family_id) {
//
}
else if (is_predicate(f) && use_fixedpoint_extensions) {
rels.insert(f);
}
else {
funcs.insert(f);
}
}
if (!use_fixedpoint_extensions) {
out << "(set-logic HORN)\n";
}
for (func_decl * f : rels)
visitor.remove_decl(f);
visitor.display_decls(out);
for (func_decl * f : rels)
display_rel_decl(out, f);
if (use_fixedpoint_extensions && do_declare_vars) {
declare_vars(rules, fresh_names, out);
}
if (num_axioms > 0 && !use_fixedpoint_extensions) {
throw default_exception("Background axioms cannot be used with SMT-LIB2 HORN format");
}
for (unsigned i = 0; i < num_axioms; ++i) {
out << "(assert ";
PP(axioms[i]);
out << ")\n";
}
for (unsigned i = 0; i < rules.size(); ++i) {
out << (use_fixedpoint_extensions?"(rule ":"(assert ");
expr* r = rules[i].get();
symbol nm = names[i];
if (symbol::null != nm) {
out << "(! ";
}
PP(r);
if (symbol::null != nm) {
out << " :named ";
while (fresh_names.contains(nm)) {
std::ostringstream s;
s << nm << '!';
nm = symbol(s.str());
}
fresh_names.add(nm);
display_symbol(out, nm) << ')';
}
out << ")\n";
}
if (use_fixedpoint_extensions) {
for (unsigned i = 0; i < queries.size(); ++i) {
expr* q = queries[i].get();
func_decl_ref fn(m);
if (is_query(q)) {
fn = to_app(q)->get_decl();
}
else {
m_free_vars(q);
m_free_vars.set_default_sort(m.mk_bool_sort());
sort* const* domain = m_free_vars.data();
expr_ref qfn(m);
expr_ref_vector args(m);
fn = m.mk_fresh_func_decl(symbol("q"), symbol(""), m_free_vars.size(), domain, m.mk_bool_sort());
display_rel_decl(out, fn);
for (unsigned j = 0; j < m_free_vars.size(); ++j) {
args.push_back(m.mk_var(j, m_free_vars[j]));
}
qfn = m.mk_implies(q, m.mk_app(fn, args.size(), args.data()));
out << "(assert ";
PP(qfn);
out << ")\n";
}
out << "(query ";
display_symbol(out, fn->get_name()) << ")\n";
}
}
else {
for (unsigned i = 0; i < queries.size(); ++i) {
if (queries.size() > 1) out << "(push 1)\n";
out << "(assert ";
expr_ref q(m);
q = m.mk_not(queries[i].get());
PP(q);
out << ")\n";
out << "(check-sat)\n";
if (queries.size() > 1) out << "(pop 1)\n";
}
}
}
void context::display_rel_decl(std::ostream& out, func_decl* f) {
smt2_pp_environment_dbg env(m);
out << "(declare-rel ";
display_symbol(out, f->get_name()) << " (";
for (unsigned i = 0; i < f->get_arity(); ++i) {
ast_smt2_pp(out, f->get_domain(i), env);
if (i + 1 < f->get_arity()) {
out << " ";
}
}
out << "))\n";
}
bool context::is_query(expr* q) {
if (!is_app(q) || !is_predicate(to_app(q)->get_decl())) {
return false;
}
app* a = to_app(q);
for (unsigned i = 0; i < a->get_num_args(); ++i) {
if (!is_var(a->get_arg(i))) {
return false;
}
var* v = to_var(a->get_arg(i));
if (v->get_idx() != i) {
return false;
}
}
return true;
}
void context::declare_vars(expr_ref_vector& rules, mk_fresh_name& fresh_names, std::ostream& out) {
//
// replace bound variables in rules by 'var declarations'
// First remove quantifiers, then replace bound variables
// by fresh constants.
//
smt2_pp_environment_dbg env(m);
var_subst vsubst(m, false);
expr_ref_vector fresh_vars(m), subst(m);
expr_ref res(m);
obj_map var_idxs;
obj_map max_vars;
for (unsigned i = 0; i < rules.size(); ++i) {
expr* r = rules[i].get();
if (!is_forall(r)) {
continue;
}
quantifier* q = to_quantifier(r);
if (has_quantifiers(q->get_expr())) {
continue;
}
max_vars.reset();
subst.reset();
unsigned max_var = 0;
unsigned num_vars = q->get_num_decls();
for (unsigned j = 0; j < num_vars; ++j) {
sort* s = q->get_decl_sort(num_vars-1-j);
// maximal var for the given sort.
if (!max_vars.find(s, max_var)) {
max_var = 0;
}
else {
++max_var;
}
max_vars.insert(s, max_var);
// index into fresh variable array.
// unsigned fresh_var_idx = 0;
unsigned_vector& vars = var_idxs.insert_if_not_there(s, unsigned_vector());
if (max_var >= vars.size()) {
SASSERT(vars.size() == max_var);
vars.push_back(fresh_vars.size());
symbol name = fresh_names.next();
fresh_vars.push_back(m.mk_const(name, s));
out << "(declare-var " << name << " ";
ast_smt2_pp(out, s, env);
out << ")\n";
}
subst.push_back(fresh_vars[vars[max_var]].get());
}
res = vsubst(q->get_expr(), subst.size(), subst.data());
rules[i] = res.get();
}
}
};