z3-z3-4.13.0.src.muz.spacer.spacer_arith_generalizers.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2019 Microsoft Corporation and Arie Gurfinkel
Module Name:
spacer_arith_generalizers.cpp
Abstract:
Arithmetic-related generalizers
Author:
Arie Gurfinkel
Revision History:
--*/
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "muz/spacer/spacer_generalizers.h"
#include "smt/smt_solver.h"
namespace spacer {
namespace {
/* Rewrite all denominators to be no larger than a given limit */
struct limit_denominator_rewriter_cfg : public default_rewriter_cfg {
ast_manager &m;
arith_util m_arith;
rational m_limit;
limit_denominator_rewriter_cfg(ast_manager &manager, rational limit)
: m(manager), m_arith(m), m_limit(limit) {}
bool is_numeral(func_decl *f, rational &val, bool &is_int) {
if (f->get_family_id() == m_arith.get_family_id() &&
f->get_decl_kind() == OP_NUM) {
val = f->get_parameter(0).get_rational();
is_int = f->get_parameter(1).get_int() != 0;
return true;
}
return false;
}
bool limit_denominator(rational &num) {
return rational::limit_denominator(num, m_limit);
}
br_status reduce_app(func_decl *f, unsigned num, expr *const *args,
expr_ref &result, proof_ref &result_pr) {
bool is_int;
rational val;
if (is_numeral(f, val, is_int) && !is_int) {
if (limit_denominator(val)) {
result = m_arith.mk_numeral(val, false);
return BR_DONE;
}
}
return BR_FAILED;
}
};
} // namespace
limit_num_generalizer::limit_num_generalizer(context &ctx,
unsigned failure_limit)
: lemma_generalizer(ctx), m_failure_limit(failure_limit) {}
bool limit_num_generalizer::limit_denominators(expr_ref_vector &lits,
rational &limit) {
ast_manager &m = m_ctx.get_ast_manager();
limit_denominator_rewriter_cfg rw_cfg(m, limit);
rewriter_tpl rw(m, false, rw_cfg);
expr_ref lit(m);
bool dirty = false;
for (unsigned i = 0, sz = lits.size(); i < sz; ++i) {
rw(lits.get(i), lit);
dirty |= (lits.get(i) != lit.get());
lits[i] = lit;
}
return dirty;
}
void limit_num_generalizer::operator()(lemma_ref &lemma) {
if (lemma->get_cube().empty()) return;
m_st.count++;
scoped_watch _w_(m_st.watch);
unsigned uses_level;
pred_transformer &pt = lemma->get_pob()->pt();
ast_manager &m = pt.get_ast_manager();
expr_ref_vector cube(m);
// create a solver to check whether updated cube is in a generalization
ref sol = mk_smt_solver(m, params_ref::get_empty(), symbol::null);
SASSERT(lemma->has_pob());
sol->assert_expr(lemma->get_pob()->post());
unsigned weakness = lemma->weakness();
rational limit(100);
for (unsigned num_failures = 0; num_failures < m_failure_limit;
++num_failures) {
cube.reset();
cube.append(lemma->get_cube());
// try to limit denominators
if (!limit_denominators(cube, limit)) return;
bool failed = false;
// check that pob->post() ==> cube
for (auto *lit : cube) {
solver::scoped_push _p_(*sol);
expr_ref nlit(m);
nlit = m.mk_not(lit);
sol->assert_expr(nlit);
lbool res = sol->check_sat(0, nullptr);
if (res == l_false) {
// good
} else {
failed = true;
TRACE("spacer.limnum", tout << "Failed to generalize: "
<< lemma->get_cube()
<< "\ninto\n"
<< cube << "\n";);
break;
}
}
// check that !cube & F & Tr ==> !cube'
if (!failed && pt.check_inductive(lemma->level(), cube, uses_level, weakness)) {
TRACE("spacer",
tout << "Reduced fractions from:\n"
<< lemma->get_cube() << "\n\nto\n"
<< cube << "\n";);
lemma->update_cube(lemma->get_pob(), cube);
lemma->set_level(uses_level);
// done
return;
}
++m_st.num_failures;
// increase limit
limit = limit * 10;
}
}
void limit_num_generalizer::collect_statistics(statistics &st) const {
st.update("time.spacer.solve.reach.gen.lim_num", m_st.watch.get_seconds());
st.update("limitted num gen", m_st.count);
st.update("limitted num gen failures", m_st.num_failures);
}
} // namespace spacer