z3-z3-4.13.0.src.sat.sat_cut_simplifier.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
sat_cut_simplifier.h
Abstract:
extract AIG definitions from clauses
Perform cut-set enumeration to identify equivalences.
Author:
Nikolaj Bjorner 2020-01-02
--*/
#pragma once
#include "util/union_find.h"
#include "sat/sat_aig_finder.h"
#include "sat/sat_aig_cuts.h"
namespace sat {
class cut_simplifier {
public:
struct stats {
unsigned m_num_eqs, m_num_units, m_num_cuts, m_num_xors, m_num_ands, m_num_ites;
unsigned m_xxors, m_xands, m_xites, m_xluts; // extrated gates
unsigned m_num_calls, m_num_dont_care_reductions, m_num_learned_implies;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
struct config {
bool m_enable_units; // enable learning units
bool m_enable_dont_cares; // enable applying don't cares to LUTs
bool m_learn_implies; // learn binary clauses
bool m_learned2aig; // add learned clauses to AIGs used by cut-set enumeration
bool m_validate_cuts; // enable direct validation of generated cuts
bool m_validate_lemmas; // enable direct validation of learned lemmas
bool m_simulate_eqs; // use symbolic simulation to control size of cutsets.
config():
m_enable_units(true),
m_enable_dont_cares(true),
m_learn_implies(false),
m_learned2aig(true),
m_validate_cuts(false),
m_validate_lemmas(false),
m_simulate_eqs(false) {}
};
private:
struct report;
struct validator;
/**
* collect pairs of literal combinations that are impossible
* base on binary implication graph queries. Apply the masks
* on cut sets so to allow detecting equivalences modulo
* implications.
*
* The encoding is as follows:
* a or b -> op = nn because (~a & ~b) is a don't care
* ~a or b -> op = pn because (a & ~b) is a don't care
* a or ~b -> op = np because (~a & b) is a don't care
* ~a or ~b -> op = pp because (a & b) is a don't care
*
*/
enum class op_code { pp, pn, np, nn, none };
struct bin_rel {
unsigned u, v;
op_code op;
bin_rel(unsigned _u, unsigned _v): u(_u), v(_v), op(op_code::none) {
if (u > v) std::swap(u, v);
}
// convert binary clause into a bin-rel
bin_rel(literal _u, literal _v): u(_u.var()), v(_v.var()), op(op_code::none) {
if (_u.sign() && _v.sign()) op = op_code::pp;
else if (_u.sign()) op = op_code::pn;
else if (_v.sign()) op = op_code::np;
else op = op_code::nn;
if (u > v) {
std::swap(u, v);
if (op == op_code::np) op = op_code::pn;
else if (op == op_code::pn) op = op_code::np;
}
}
bin_rel(): u(UINT_MAX), v(UINT_MAX), op(op_code::none) {}
struct hash {
unsigned operator()(bin_rel const& p) const {
return p.u + 65599*p.v; // Weinberger's should be a bit cheaper mk_mix(p.u, p.v, 1);
}
};
struct eq {
bool operator()(bin_rel const& a, bin_rel const& b) const {
return a.u == b.u && a.v == b.v;
}
};
void to_binary(literal& lu, literal& lv) const {
switch (op) {
case op_code::pp: lu = literal(u, true); lv = literal(v, true); break;
case op_code::pn: lu = literal(u, true); lv = literal(v, false); break;
case op_code::np: lu = literal(u, false); lv = literal(v, true); break;
case op_code::nn: lu = literal(u, false); lv = literal(v, false); break;
default: UNREACHABLE(); break;
}
}
};
solver& s;
stats m_stats;
config m_config;
aig_cuts m_aig_cuts;
unsigned m_trail_size;
literal_vector m_lits;
validator* m_validator;
hashtable m_bins;
void clauses2aig();
void aig2clauses();
void simulate_eqs();
void cuts2equiv(vector const& cuts);
void cuts2implies(vector const& cuts);
void uf2equiv(union_find<> const& uf);
void assign_unit(cut const& c, literal lit);
void assign_equiv(cut const& c, literal u, literal v);
void learn_implies(big& big, cut const& c, literal u, literal v);
void ensure_validator();
void validate_unit(literal lit);
void validate_eq(literal a, literal b);
void certify_unit(literal u, cut const& c);
void certify_implies(literal u, literal v, cut const& c);
void certify_equivalence(literal u, literal v, cut const& c);
void track_binary(literal u, literal v);
void untrack_binary(literal u, literal v);
void track_binary(bin_rel const& p);
void untrack_binary(bin_rel const& p);
void add_dont_cares(vector const& cuts);
void cuts2bins(vector const& cuts);
void bins2dont_cares();
void dont_cares2cuts(vector const& cuts);
bool add_dont_care(cut const & c);
uint64_t op2dont_care(unsigned i, unsigned j, bin_rel const& p);
public:
cut_simplifier(solver& s);
~cut_simplifier();
void operator()();
void collect_statistics(statistics& st) const;
/**
* The clausifier may know that some literal is defined as a
* function of other literals. This API is exposed so that
* the clausifier can instrument the simplifier with an initial
* AIG.
* set_root is issued from the equivalence finder.
*/
void add_and(literal head, unsigned sz, literal const* args);
void add_or(literal head, unsigned sz, literal const* args);
void add_xor(literal head, unsigned sz, literal const* args);
void add_ite(literal head, literal c, literal t, literal e);
void add_iff(literal head, literal l1, literal l2);
void set_root(bool_var v, literal r);
};
}