z3-z3-4.13.0.src.sat.smt.array_diagnostics.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
array_diagnostics.cpp
Abstract:
Theory plugin for arrays, diagnostics functions
Author:
Nikolaj Bjorner (nbjorner) 2020-09-08
*/
#include "sat/smt/array_solver.h"
#include "sat/smt/euf_solver.h"
namespace array {
std::ostream& solver::display(std::ostream& out) const {
if (get_num_vars() > 0)
out << "array\n";
for (unsigned i = 0; i < get_num_vars(); ++i) {
auto& d = get_var_data(i);
out << "v" << i << ": " << var2enode(i)->get_expr_id() << " " << (d.m_prop_upward?"up":"fx") << " " << mk_bounded_pp(var2expr(i), m, 2) << "\n";
display_info(out, "parent lambdas", d.m_parent_lambdas);
display_info(out, "parent select", d.m_parent_selects);
display_info(out, "lambdas", d.m_lambdas);
}
return out;
}
std::ostream& solver::display_info(std::ostream& out, char const* id, euf::enode_vector const& v) const {
if (v.empty())
return out;
out << id << ":\n";
for (euf::enode* p : v)
out << " " << ctx.bpp(p) << "\n";
return out;
}
std::ostream& solver::display(std::ostream& out, axiom_record const& r) const {
if (r.is_delayed())
out << "delay ";
switch (r.m_kind) {
case axiom_record::kind_t::is_store:
return out << "store " << ctx.bpp(r.n);
case axiom_record::kind_t::is_select:
return out << "select " << ctx.bpp(r.n) << " " << ctx.bpp(r.select);
case axiom_record::kind_t::is_default:
return out << "default " << ctx.bpp(r.n);
case axiom_record::kind_t::is_extensionality:
return out << "extensionality " << ctx.bpp(r.n) << " " << ctx.bpp(r.select);
case axiom_record::kind_t::is_congruence:
return out << "congruence " << ctx.bpp(r.n) << " " << ctx.bpp(r.select);
default:
UNREACHABLE();
}
return out;
}
std::ostream& solver::display_justification(std::ostream& out, sat::ext_justification_idx idx) const { return out; }
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const { return out; }
void solver::collect_statistics(statistics& st) const {
st.update("array store", m_stats.m_num_store_axiom);
st.update("array sel/store", m_stats.m_num_select_store_axiom);
st.update("array sel/const", m_stats.m_num_select_const_axiom);
st.update("array sel/map", m_stats.m_num_select_map_axiom);
st.update("array sel/as array", m_stats.m_num_select_as_array_axiom);
st.update("array sel/lambda", m_stats.m_num_select_lambda_axiom);
st.update("array def/map", m_stats.m_num_default_map_axiom);
st.update("array def/const", m_stats.m_num_default_const_axiom);
st.update("array def/store", m_stats.m_num_default_store_axiom);
st.update("array ext ax", m_stats.m_num_extensionality_axiom);
st.update("array cong ax", m_stats.m_num_congruence_axiom);
st.update("array exp ax2", m_stats.m_num_select_store_axiom_delayed);
st.update("array splits", m_stats.m_num_eq_splits);
}
void solver::validate_check() const {
for (euf::enode* n : ctx.get_egraph().nodes()) {
if (!ctx.is_relevant(n))
continue;
if (a.is_select(n->get_expr()) && a.is_store(n->get_arg(0)->get_expr()))
validate_select_store(n);
if (is_array(n) && n->is_root() && ctx.is_shared(n)) {
for (euf::enode* k : ctx.get_egraph().nodes())
if (k->get_expr_id() > n->get_expr_id() && k->is_root() && is_array(k) && ctx.is_shared(k))
validate_extensionality(n, k);
}
expr* x = nullptr, *y = nullptr;
#if 0
if (m.is_eq(n->get_expr(), x, y) && a.is_array(x))
std::cout << ctx.bpp(n) << " " << s().value(n->bool_var()) << "\n";
#endif
if (m.is_eq(n->get_expr(), x, y) && a.is_array(x) && s().value(n->bool_var()) == l_false)
validate_extensionality(expr2enode(x), expr2enode(y));
}
}
void solver::validate_select_store(euf::enode* n) const {
SASSERT(a.is_select(n->get_expr()));
SASSERT(a.is_store(n->get_arg(0)->get_expr()));
bool same_args = true;
for (unsigned i = 1; same_args && i < n->num_args(); ++i)
same_args = n->get_arg(i)->get_root() == n->get_arg(0)->get_arg(i)->get_root();
if (same_args) {
VERIFY(n->get_arg(0)->get_arg(n->num_args())->get_root() == n->get_root());
return;
}
euf::enode_vector args;
ptr_vector eargs;
args.push_back(n->get_arg(0)->get_arg(0));
for (unsigned i = 1; i < n->num_args(); ++i)
args.push_back(n->get_arg(i));
for (euf::enode* n : args)
eargs.push_back(n->get_expr());
expr_ref sel(a.mk_select(eargs.size(), eargs.data()), m);
euf::enode* n1 = ctx.get_egraph().find(sel, args.size(), args.data());
if (n1 && n1->get_root() == n->get_root())
return;
IF_VERBOSE(0,
verbose_stream() << ctx.bpp(n) << "\n";
verbose_stream() << sel << "\n";
verbose_stream() << n1 << " " << n->get_root() << "\n";);
}
void solver::validate_extensionality(euf::enode* s, euf::enode* t) const {
if (s->get_sort() != t->get_sort())
return;
IF_VERBOSE(0,
verbose_stream() << "extensionality " << ctx.bpp(s) << " " << ctx.bpp(t) << "\n";);
}
}