z3-z3-4.13.0.src.sat.smt.euf_proof.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_proof.cpp
Abstract:
Proof logging facilities.
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#include "sat/smt/euf_solver.h"
#include "ast/ast_util.h"
#include
namespace euf {
void solver::init_proof() {
if (m_proof_initialized)
return;
if (m_on_clause && !s().get_config().m_drat_disable)
s().set_drat(true);
if (!s().get_config().m_drat)
return;
if (!get_config().m_lemmas2console &&
!s().get_config().m_smt_proof_check &&
!m_on_clause &&
!m_config.m_proof_log.is_non_empty_string())
return;
if (m_config.m_proof_log.is_non_empty_string())
m_proof_out = alloc(std::ofstream, m_config.m_proof_log.str(), std::ios_base::out);
get_drat().set_clause_eh(*this);
m_proof_initialized = true;
}
/**
* Log justifications.
* is_euf - true if l is justified by congruence closure. In this case create a congruence closure proof.
* explain_size - the relevant portion of premises for the congruence closure proof.
* The EUF solver manages equality propagation. Each propagated equality is justified by a congruence closure.
*/
void solver::log_justifications(literal l, unsigned explain_size, bool is_euf) {
unsigned nv = s().num_vars();
expr_ref_vector eqs(m);
auto add_hint_literals = [&](unsigned sz) {
eqs.reset();
m_hint_lits.reset();
nv = s().num_vars();
for (unsigned i = 0; i < sz; ++i) {
size_t* e = m_explain[i];
if (is_literal(e))
m_hint_lits.push_back(get_literal(e));
else {
auto [x, y] = th_explain::from_index(get_justification(e)).eq_consequent();
eqs.push_back(m.mk_eq(x->get_expr(), y->get_expr()));
set_tmp_bool_var(nv, eqs.back());
m_hint_lits.push_back(literal(nv, false));
++nv;
}
}
};
auto clear_hint_literals = [&]() {
for (unsigned v = s().num_vars(); v < nv; ++v)
set_tmp_bool_var(v, nullptr);
};
// log EUF justifications
if (is_euf) {
add_hint_literals(explain_size);
auto* hint = mk_hint(m_euf, l);
log_antecedents(l, m_hint_lits, hint);
clear_hint_literals();
}
// explain equalities
for (auto const& [a, b] : m_hint_eqs) {
m_egraph.begin_explain();
m_explain.reset();
m_egraph.explain_eq(m_explain, &m_explain_cc, a, b);
m_egraph.end_explain();
// Detect shortcut if equality is explained directly by a theory
if (m_explain.size() == 1 && !is_literal(m_explain[0])) {
auto const& [x, y] = th_explain::from_index(get_justification(m_explain[0])).eq_consequent();
if (x == a && y == b)
continue;
}
add_hint_literals(m_explain.size());
eqs.push_back(m.mk_eq(a->get_expr(), b->get_expr()));
set_tmp_bool_var(nv, eqs.back());
sat::literal eql = literal(nv, false);
++nv;
auto* hint = mk_hint(m_euf, eql);
log_antecedents(eql, m_hint_lits, hint);
clear_hint_literals();
}
}
void solver::log_antecedents(literal l, literal_vector const& r, th_proof_hint* hint) {
SASSERT(hint && use_drat());
TRACE("euf", log_antecedents(tout, l, r); tout << mk_pp(hint->get_hint(*this), m) << "\n");
literal_vector lits;
for (literal lit : r)
lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
get_drat().add(lits, sat::status::th(true, get_id(), hint));
}
void solver::log_rup(literal l, literal_vector const& r) {
literal_vector lits;
for (literal lit : r)
lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
get_drat().add(lits, sat::status::redundant());
}
void solver::log_antecedents(std::ostream& out, literal l, literal_vector const& r) {
for (sat::literal l : r) {
expr* n = m_bool_var2expr[l.var()];
out << ~l << ": ";
if (!l.sign()) out << "! ";
out << mk_bounded_pp(n, m) << "\n";
SASSERT(s().value(l) == l_true);
}
if (l != sat::null_literal) {
out << l << ": ";
if (l.sign()) out << "! ";
expr* n = m_bool_var2expr[l.var()];
out << mk_bounded_pp(n, m) << "\n";
}
}
eq_proof_hint* solver::mk_hint(symbol const& th, literal conseq) {
if (!use_drat())
return nullptr;
push(value_trail(m_lit_tail));
push(value_trail(m_cc_tail));
push(restore_vector(m_proof_literals));
if (conseq != sat::null_literal)
m_proof_literals.push_back(~conseq);
m_proof_literals.append(m_hint_lits);
m_lit_head = m_lit_tail;
m_cc_head = m_cc_tail;
m_lit_tail = m_proof_literals.size();
m_cc_tail = m_explain_cc.size();
return new (get_region()) eq_proof_hint(th, m_lit_head, m_lit_tail, m_cc_head, m_cc_tail);
}
th_proof_hint* solver::mk_cc_proof_hint(sat::literal_vector const& ante, app* a, app* b) {
if (!use_drat())
return nullptr;
SASSERT(a->get_decl() == b->get_decl());
push(value_trail(m_lit_tail));
push(value_trail(m_cc_tail));
push(restore_vector(m_proof_literals));
push(restore_vector(m_explain_cc));
for (auto lit : ante)
m_proof_literals.push_back(~lit);
m_explain_cc.push_back({a, b, 0, false});
m_lit_head = m_lit_tail;
m_cc_head = m_cc_tail;
m_lit_tail = m_proof_literals.size();
m_cc_tail = m_explain_cc.size();
return new (get_region()) eq_proof_hint(m_euf, m_lit_head, m_lit_tail, m_cc_head, m_cc_tail);
}
th_proof_hint* solver::mk_tc_proof_hint(sat::literal const* clause) {
if (!use_drat())
return nullptr;
push(value_trail(m_lit_tail));
push(value_trail(m_cc_tail));
push(restore_vector(m_proof_literals));
for (unsigned i = 0; i < 3; ++i)
m_proof_literals.push_back(~clause[i]);
m_lit_head = m_lit_tail;
m_cc_head = m_cc_tail;
m_lit_tail = m_proof_literals.size();
m_cc_tail = m_explain_cc.size();
return new (get_region()) eq_proof_hint(m_euf, m_lit_head, m_lit_tail, m_cc_head, m_cc_tail);
}
expr* eq_proof_hint::get_hint(euf::solver& s) const {
ast_manager& m = s.get_manager();
func_decl_ref cc(m), cc_comm(m);
sort* proof = m.mk_proof_sort();
expr_ref_vector& args = s.m_expr_args;
args.reset();
if (m_cc_head < m_cc_tail) {
sort* sorts[1] = { m.mk_bool_sort() };
cc_comm = m.mk_func_decl(symbol("comm"), 1, sorts, proof);
cc = m.mk_func_decl(symbol("cc"), 1, sorts, proof);
}
auto cc_proof = [&](bool comm, expr* eq) {
if (comm)
return m.mk_app(cc_comm, eq);
else
return m.mk_app(cc, eq);
};
auto compare_ts = [](cc_justification_record const& a,
cc_justification_record const& b) {
auto const& [_1, _2, ta, _3] = a;
auto const& [_4, _5, tb, _6] = b;
return ta < tb;
};
for (unsigned i = m_lit_head; i < m_lit_tail; ++i)
args.push_back(s.literal2expr(s.m_proof_literals[i]));
std::sort(s.m_explain_cc.data() + m_cc_head, s.m_explain_cc.data() + m_cc_tail, compare_ts);
for (unsigned i = m_cc_head; i < m_cc_tail; ++i) {
auto const& [a, b, ts, comm] = s.m_explain_cc[i];
args.push_back(cc_proof(comm, m.mk_eq(a, b)));
}
return m.mk_app(th, args.size(), args.data(), proof);
}
smt_proof_hint* solver::mk_smt_clause(symbol const& n, unsigned nl, literal const* lits) {
if (!use_drat())
return nullptr;
push(value_trail(m_lit_tail));
push(restore_vector(m_proof_literals));
for (unsigned i = 0; i < nl; ++i)
m_proof_literals.push_back(~lits[i]);
m_lit_head = m_lit_tail;
m_eq_head = m_eq_tail;
m_deq_head = m_deq_tail;
m_lit_tail = m_proof_literals.size();
m_eq_tail = m_proof_eqs.size();
m_deq_tail = m_proof_deqs.size();
return new (get_region()) smt_proof_hint(n, m_lit_head, m_lit_tail, m_eq_head, m_eq_tail, m_deq_head, m_deq_tail);
}
smt_proof_hint* solver::mk_smt_hint(symbol const& n, unsigned nl, literal const* lits, unsigned ne, expr_pair const* eqs, unsigned nd, expr_pair const* deqs) {
if (!use_drat())
return nullptr;
push(value_trail(m_lit_tail));
push(restore_vector(m_proof_literals));
for (unsigned i = 0; i < nl; ++i)
if (sat::null_literal != lits[i]) {
if (!literal2expr(lits[i]))
IF_VERBOSE(0, verbose_stream() << lits[i] << "\n"; display(verbose_stream()));
SASSERT(literal2expr(lits[i]));
m_proof_literals.push_back(lits[i]);
}
push(value_trail(m_eq_tail));
push(restore_vector(m_proof_eqs));
m_proof_eqs.append(ne, eqs);
push(value_trail(m_deq_tail));
push(restore_vector(m_proof_deqs));
m_proof_deqs.append(nd, deqs);
m_lit_head = m_lit_tail;
m_eq_head = m_eq_tail;
m_deq_head = m_deq_tail;
m_lit_tail = m_proof_literals.size();
m_eq_tail = m_proof_eqs.size();
m_deq_tail = m_proof_deqs.size();
return new (get_region()) smt_proof_hint(n, m_lit_head, m_lit_tail, m_eq_head, m_eq_tail, m_deq_head, m_deq_tail);
}
smt_proof_hint* solver::mk_smt_hint(symbol const& n, unsigned nl, literal const* lits, unsigned ne, enode_pair const* eqs) {
if (!use_drat())
return nullptr;
m_expr_pairs.reset();
for (unsigned i = 0; i < ne; ++i)
m_expr_pairs.push_back({ eqs[i].first->get_expr(), eqs[i].second->get_expr() });
return mk_smt_hint(n, nl, lits, ne, m_expr_pairs.data());
}
sat::status solver::mk_tseitin_status(sat::literal a, sat::literal b) {
sat::literal lits[2] = { a, b };
return mk_tseitin_status(2, lits);
}
sat::status solver::mk_tseitin_status(unsigned n, sat::literal const* lits) {
th_proof_hint* ph = use_drat() ? mk_smt_hint(symbol("tseitin"), n, lits) : nullptr;
return sat::status::th(false, m.get_basic_family_id(), ph);
}
sat::status solver::mk_distinct_status(unsigned n, sat::literal const* lits) {
th_proof_hint* ph = use_drat() ? mk_smt_hint(symbol("alldiff"), n, lits) : nullptr;
return sat::status::th(false, m.get_basic_family_id(), ph);
}
expr* smt_proof_hint::get_hint(euf::solver& s) const {
ast_manager& m = s.get_manager();
sort* proof = m.mk_proof_sort();
ptr_buffer sorts;
expr_ref_vector args(m);
for (unsigned i = m_lit_head; i < m_lit_tail; ++i)
args.push_back(s.literal2expr(s.m_proof_literals[i]));
for (unsigned i = m_eq_head; i < m_eq_tail; ++i) {
auto const& [a, b] = s.m_proof_eqs[i];
args.push_back(m.mk_eq(a, b));
}
for (unsigned i = m_deq_head; i < m_deq_tail; ++i) {
auto const& [a, b] = s.m_proof_deqs[i];
args.push_back(m.mk_not(m.mk_eq(a, b)));
}
return m.mk_app(m_name, args.size(), args.data(), proof);
}
void solver::set_tmp_bool_var(bool_var b, expr* e) {
m_bool_var2expr.setx(b, e, nullptr);
}
void solver::log_justification(literal l, th_explain const& jst) {
literal_vector lits;
expr_ref_vector eqs(m);
unsigned nv = s().num_vars();
auto add_lit = [&](enode_pair const& eq) {
unsigned v = nv;
++nv;
eqs.push_back(m.mk_eq(eq.first->get_expr(), eq.second->get_expr()));
set_tmp_bool_var(v, eqs.back());
return literal(v, false);
};
for (auto lit : euf::th_explain::lits(jst))
lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
for (auto eq : euf::th_explain::eqs(jst))
lits.push_back(~add_lit(eq));
if (jst.lit_consequent() != sat::null_literal && jst.lit_consequent() != l)
lits.push_back(jst.lit_consequent());
if (jst.eq_consequent().first != nullptr)
lits.push_back(add_lit(jst.eq_consequent()));
get_drat().add(lits, sat::status::th(false, jst.ext().get_id(), jst.get_pragma()));
for (unsigned i = s().num_vars(); i < nv; ++i)
set_tmp_bool_var(i, nullptr);
}
void solver::on_clause(unsigned n, literal const* lits, sat::status st) {
TRACE("euf_verbose", tout << "on-clause " << n << "\n");
on_lemma(n, lits, st);
on_proof(n, lits, st);
on_check(n, lits, st);
on_clause_eh(n, lits, st);
}
void solver::on_clause_eh(unsigned n, literal const* lits, sat::status st) {
if (!m_on_clause)
return;
m_clause.reset();
for (unsigned i = 0; i < n; ++i)
m_clause.push_back(literal2expr(lits[i]));
auto hint = status2proof_hint(st);
m_on_clause(m_on_clause_ctx, hint, 0, nullptr, m_clause.size(), m_clause.data());
}
void solver::on_proof(unsigned n, literal const* lits, sat::status st) {
if (!m_proof_out)
return;
flet _display_all_decls(m_display_all_decls, true);
std::ostream& out = *m_proof_out;
if (!visit_clause(out, n, lits))
return;
if (st.is_asserted())
display_inferred(out, n, lits, status2proof_hint(st));
else if (st.is_deleted())
display_deleted(out, n, lits);
else if (st.is_redundant())
display_inferred(out, n, lits, status2proof_hint(st));
else if (st.is_input())
display_assume(out, n, lits);
else
UNREACHABLE();
out.flush();
}
void solver::on_check(unsigned n, literal const* lits, sat::status st) {
if (!s().get_config().m_smt_proof_check)
return;
m_clause.reset();
for (unsigned i = 0; i < n; ++i)
m_clause.push_back(literal2expr(lits[i]));
auto hint = status2proof_hint(st);
if (st.is_asserted() || st.is_redundant())
m_smt_proof_checker.infer(m_clause, hint);
else if (st.is_deleted())
m_smt_proof_checker.del(m_clause);
else if (st.is_input())
m_smt_proof_checker.assume(m_clause);
}
void solver::on_lemma(unsigned n, literal const* lits, sat::status st) {
if (!get_config().m_lemmas2console)
return;
if (!st.is_redundant() && !st.is_asserted())
return;
std::ostream& out = std::cout;
if (!visit_clause(out, n, lits))
return;
std::function ppth = [&](int th) {
return m.get_family_name(th);
};
if (!st.is_sat())
out << "; " << sat::status_pp(st, ppth) << "\n";
display_assert(out, n, lits);
}
void solver::on_instantiation(unsigned n, sat::literal const* lits, unsigned k, euf::enode* const* bindings) {
std::ostream& out = std::cout;
for (unsigned i = 0; i < k; ++i)
visit_expr(out, bindings[i]->get_expr());
VERIFY(visit_clause(out, n, lits));
out << "(instantiate";
display_literals(out, n, lits);
for (unsigned i = 0; i < k; ++i)
display_expr(out << " :binding ", bindings[i]->get_expr());
out << ")\n";
}
bool solver::visit_clause(std::ostream& out, unsigned n, literal const* lits) {
expr_ref k(m);
for (unsigned i = 0; i < n; ++i) {
expr* e = bool_var2expr(lits[i].var());
if (!e) {
k = m.mk_const(symbol(lits[i].var()), m.mk_bool_sort());
e = k;
}
visit_expr(out, e);
}
return true;
}
void solver::display_assert(std::ostream& out, unsigned n, literal const* lits) {
display_literals(out << "(assert (or", n, lits) << "))\n";
}
void solver::display_assume(std::ostream& out, unsigned n, literal const* lits) {
display_literals(out << "(assume", n, lits) << ")\n";
}
void solver::display_inferred(std::ostream& out, unsigned n, literal const* lits, expr* proof_hint) {
expr_ref hint(proof_hint, m);
if (!hint)
hint = m.mk_const(m_smt, m.mk_proof_sort());
visit_expr(out, hint);
display_hint(display_literals(out << "(infer", n, lits), hint) << ")\n";
}
void solver::display_deleted(std::ostream& out, unsigned n, literal const* lits) {
display_literals(out << "(del", n, lits) << ")\n";
}
std::ostream& solver::display_hint(std::ostream& out, expr* proof_hint) {
if (proof_hint)
return display_expr(out << " ", proof_hint);
else
return out;
}
app_ref solver::status2proof_hint(sat::status st) {
if (st.is_sat())
return app_ref(m.mk_const("rup", m.mk_proof_sort()), m); // provable by reverse unit propagation
auto* h = reinterpret_cast(st.get_hint());
if (!h)
return app_ref(m);
expr* e = h->get_hint(*this);
if (e)
return app_ref(to_app(e), m);
return app_ref(m);
}
std::ostream& solver::display_literals(std::ostream& out, unsigned n, literal const* lits) {
expr_ref k(m);
for (unsigned i = 0; i < n; ++i) {
expr* e = bool_var2expr(lits[i].var());
if (!e) {
k = m.mk_const(symbol(lits[i].var()), m.mk_bool_sort());
e = k;
}
SASSERT(e);
if (lits[i].sign())
display_expr(out << " (not ", e) << ")";
else
display_expr(out << " ", e);
}
return out;
}
void solver::visit_expr(std::ostream& out, expr* e) {
m_clause_visitor.collect(e);
if (m_display_all_decls)
m_clause_visitor.display_decls(out);
else
m_clause_visitor.display_skolem_decls(out);
m_clause_visitor.define_expr(out, e);
}
std::ostream& solver::display_expr(std::ostream& out, expr* e) {
return m_clause_visitor.display_expr_def(out, e);
}
}