z3-z3-4.13.0.src.sat.smt.euf_solver.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_solver.cpp
Abstract:
Solver plugin for EUF
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#include "ast/pb_decl_plugin.h"
#include "ast/ast_ll_pp.h"
#include "sat/sat_solver.h"
#include "sat/smt/sat_smt.h"
#include "sat/smt/pb_solver.h"
#include "sat/smt/bv_solver.h"
#include "sat/smt/intblast_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/array_solver.h"
#include "sat/smt/arith_solver.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/fpa_solver.h"
#include "sat/smt/dt_solver.h"
#include "sat/smt/recfun_solver.h"
#include "sat/smt/specrel_solver.h"
namespace euf {
std::ostream& clause_pp::display(std::ostream& out) const {
for (auto lit : lits)
out << s.literal2expr(lit) << " ";
return out;
}
solver::solver(ast_manager& m, sat::sat_internalizer& si, params_ref const& p) :
extension(symbol("euf"), m.mk_family_id("euf")),
m(m),
si(si),
m_relevancy(*this),
m_egraph(m),
m_trail(),
m_rewriter(m),
m_unhandled_functions(m),
m_to_m(&m),
m_to_si(&si),
m_clause_visitor(m),
m_smt_proof_checker(m, p),
m_clause(m),
m_expr_args(m),
m_values(m)
{
updt_params(p);
m_relevancy.set_enabled(get_config().m_relevancy_lvl > 2);
std::function disp =
[&](std::ostream& out, void* j) {
display_justification_ptr(out, reinterpret_cast(j));
};
m_egraph.set_display_justification(disp);
std::function on_literal = [&](enode* n, enode* ante) {
propagate_literal(n, ante);
};
m_egraph.set_on_propagate(on_literal);
if (m_relevancy.enabled()) {
std::function on_merge =
[&](enode* root, enode* other) {
m_relevancy.merge(root, other);
};
m_egraph.set_on_merge(on_merge);
}
}
void solver::updt_params(params_ref const& p) {
m_config.updt_params(p);
use_drat();
}
/**
* retrieve extension that is associated with Boolean variable.
*/
th_solver* solver::bool_var2solver(sat::bool_var v) {
if (v >= m_bool_var2expr.size())
return nullptr;
expr* e = m_bool_var2expr[v];
if (!e)
return nullptr;
return expr2solver(e);
}
th_solver* solver::expr2solver(expr* e) {
if (is_app(e))
return func_decl2solver(to_app(e)->get_decl());
if (is_forall(e) || is_exists(e))
return quantifier2solver();
return nullptr;
}
th_solver* solver::quantifier2solver() {
family_id fid = m.mk_family_id(symbol("quant"));
auto* ext = m_id2solver.get(fid, nullptr);
if (ext)
return ext;
ext = alloc(q::solver, *this, fid);
m_qsolver = ext;
add_solver(ext);
return ext;
}
th_solver* solver::get_solver(family_id fid, func_decl* f) {
if (fid == null_family_id)
return nullptr;
auto* ext = m_id2solver.get(fid, nullptr);
if (ext)
return ext;
if (fid == m.get_basic_family_id())
return nullptr;
if (fid == m.get_user_sort_family_id())
return nullptr;
pb_util pb(m);
bv_util bvu(m);
array_util au(m);
fpa_util fpa(m);
arith_util arith(m);
datatype_util dt(m);
recfun::util rf(m);
special_relations_util sp(m);
if (pb.get_family_id() == fid)
ext = alloc(pb::solver, *this, fid);
else if (bvu.get_family_id() == fid) {
if (get_config().m_bv_solver == 0)
ext = alloc(bv::solver, *this, fid);
else if (get_config().m_bv_solver == 1)
throw default_exception("polysat solver is not integrated");
else if (get_config().m_bv_solver == 2)
ext = alloc(intblast::solver, *this);
else
throw default_exception("unknown bit-vector solver. Accepted values 0 (bit blast), 1 (polysat), 2 (int blast)");
}
else if (au.get_family_id() == fid)
ext = alloc(array::solver, *this, fid);
else if (fpa.get_family_id() == fid)
ext = alloc(fpa::solver, *this);
else if (arith.get_family_id() == fid)
ext = alloc(arith::solver, *this, fid);
else if (dt.get_family_id() == fid)
ext = alloc(dt::solver, *this, fid);
else if (rf.get_family_id() == fid)
ext = alloc(recfun::solver, *this);
else if (sp.get_family_id() == fid)
ext = alloc(specrel::solver, *this, fid);
if (ext)
add_solver(ext);
else if (f)
unhandled_function(f);
return ext;
}
void solver::add_solver(th_solver* th) {
family_id fid = th->get_id();
th->set_solver(m_solver);
th->push_scopes(s().num_scopes() + s().num_user_scopes());
m_solvers.push_back(th);
m_id2solver.setx(fid, th, nullptr);
if (th->use_diseqs())
m_egraph.set_th_propagates_diseqs(fid);
}
void solver::unhandled_function(func_decl* f) {
if (m_unhandled_functions.contains(f))
return;
if (m.is_model_value(f))
return;
m_unhandled_functions.push_back(f);
m_trail.push(push_back_vector(m_unhandled_functions));
IF_VERBOSE(0, verbose_stream() << mk_pp(f, m) << " not handled\n");
}
void solver::init_search() {
TRACE("before_search", s().display(tout););
m_reason_unknown.clear();
for (auto* s : m_solvers)
s->init_search();
}
bool solver::is_external(bool_var v) {
if (s().is_external(v))
return true;
if (nullptr != m_bool_var2expr.get(v, nullptr))
return true;
for (auto* s : m_solvers)
if (s->is_external(v))
return true;
return false;
}
bool solver::propagated(literal l, ext_constraint_idx idx) {
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext != this);
return ext->propagated(l, idx);
}
void solver::set_conflict(ext_constraint_idx idx) {
s().set_conflict(sat::justification::mk_ext_justification(s().scope_lvl(), idx));
}
void solver::propagate(literal lit, ext_justification_idx idx) {
mark_relevant(lit);
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), idx));
}
lbool solver::resolve_conflict() {
for (auto* s : m_solvers) {
lbool r = s->resolve_conflict();
if (r != l_undef)
return r;
}
return l_undef;
}
/**
Retrieve set of literals r that imply r.
Since the set of literals are retrieved modulo multiple theories in a single implication
we lose theory specific justifications. For proof logging we use a catch all rule "smt"
for the case where an equality is derived using more than congruence closure.
To create fully decomposed justifications it will be necessary to augment the justification
data-structure with information about the equality that is implied by the theory.
Then each justification will imply an equality s = t assuming literals 'r'.
The theory lemma is then r -> s = t, where s = t is an equality that is available for the EUF hint.
The EUF hint is resolved against r -> s = t to eliminate s = t and to create the resulting explanation.
Example:
x - 3 = 0 => x = 3 by arithmetic
x = 3 => f(x) = f(3) by EUF
resolve to produce clause x - 3 = 0 => f(x) = f(3)
The last argument to get_assumptions is a place-holder to retrieve a justification of a propagation.
Theory solver would have to populate this hint and the combined hint would have to be composed from the
sub-hints.
*/
void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) {
bool create_hint = use_drat() && !probing;
if (create_hint) {
push(restore_vector(m_explain_cc));
m_hint_eqs.reset();
}
auto* ext = sat::constraint_base::to_extension(idx);
bool is_euf = ext == this;
bool multiple_theories = false;
m_egraph.begin_explain();
m_explain.reset();
if (is_euf)
get_euf_antecedents(l, constraint::from_idx(idx), r, probing);
else
ext->get_antecedents(l, idx, r, probing);
unsigned ez = m_explain.size();
for (unsigned qhead = 0; qhead < m_explain.size(); ++qhead) {
size_t* e = m_explain[qhead];
if (is_literal(e))
r.push_back(get_literal(e));
else {
multiple_theories = true;
size_t idx = get_justification(e);
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext != this);
sat::literal lit = sat::null_literal;
ext->get_antecedents(lit, idx, r, probing);
}
}
m_egraph.end_explain();
CTRACE("euf", probing, tout << "explain " << l << " <- " << r << "\n");
unsigned j = 0;
for (auto lit : r)
if (s().lvl(lit) > 0)
r[j++] = lit;
bool reduced = j < r.size();
r.shrink(j);
DEBUG_CODE(for (auto lit : r) SASSERT(s().value(lit) == l_true););
if (create_hint) {
log_justifications(l, ez, is_euf);
if (l != sat::null_literal && (reduced || multiple_theories))
log_rup(l, r);
}
}
void solver::get_eq_antecedents(enode* a, enode* b, literal_vector& r) {
m_egraph.begin_explain();
m_explain.reset();
m_egraph.explain_eq(m_explain, nullptr, a, b);
for (unsigned qhead = 0; qhead < m_explain.size(); ++qhead) {
size_t* e = m_explain[qhead];
if (is_literal(e))
r.push_back(get_literal(e));
else {
size_t idx = get_justification(e);
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext != this);
sat::literal lit = sat::null_literal;
ext->get_antecedents(lit, idx, r, true);
}
}
m_egraph.end_explain();
}
void solver::get_th_antecedents(literal l, th_explain& jst, literal_vector& r, bool probing) {
for (auto lit : euf::th_explain::lits(jst))
r.push_back(lit);
for (auto eq : euf::th_explain::eqs(jst))
add_eq_antecedent(probing, eq.first, eq.second);
if (!probing && use_drat())
log_justification(l, jst);
}
void solver::add_eq_antecedent(bool probing, enode* a, enode* b) {
if (!probing && use_drat())
m_hint_eqs.push_back({a, b});
m_egraph.explain_eq(m_explain, nullptr, a, b);
}
void solver::explain_diseq(ptr_vector& ex, cc_justification* cc, enode* a, enode* b) {
sat::bool_var v = get_egraph().explain_diseq(ex, cc, a, b);
SASSERT(v == sat::null_bool_var || s().value(v) == l_false);
if (v != sat::null_bool_var)
ex.push_back(to_ptr(sat::literal(v, true)));
}
bool solver::propagate(enode* a, enode* b, ext_justification_idx idx) {
if (a->get_root() == b->get_root())
return false;
m_egraph.merge(a, b, to_ptr(idx));
return true;
}
void solver::get_euf_antecedents(literal l, constraint& j, literal_vector& r, bool probing) {
expr* e = nullptr;
euf::enode* n = nullptr;
cc_justification* cc = nullptr;
if (!probing && !m_drating)
init_ackerman();
if (!probing && use_drat())
cc = &m_explain_cc;
switch (j.kind()) {
case constraint::kind_t::conflict:
SASSERT(m_egraph.inconsistent());
m_egraph.explain(m_explain, cc);
break;
case constraint::kind_t::eq:
e = m_bool_var2expr[l.var()];
n = m_egraph.find(e);
SASSERT(n);
SASSERT(n->is_equality());
SASSERT(!l.sign());
m_egraph.explain_eq(m_explain, cc, n->get_arg(0), n->get_arg(1));
break;
case constraint::kind_t::lit: {
e = m_bool_var2expr[l.var()];
n = m_egraph.find(e);
enode* ante = j.node();
SASSERT(n);
SASSERT(m.is_bool(n->get_expr()));
SASSERT(ante->get_root() == n->get_root());
m_egraph.explain_eq(m_explain, cc, n, ante);
if (!m.is_true(ante->get_expr()) && !m.is_false(ante->get_expr())) {
bool_var v = ante->bool_var();
lbool val = ante->value();
SASSERT(val != l_undef);
literal ante_lit(v, val == l_false);
TRACE("euf", tout << "explain " << bpp(n) << " by " << bpp(ante) << "\n");
m_explain.push_back(to_ptr(ante_lit));
}
break;
}
default:
IF_VERBOSE(0, verbose_stream() << (unsigned)j.kind() << "\n");
UNREACHABLE();
}
}
void solver::set_eliminated(bool_var v) {
si.uncache(literal(v, false));
si.uncache(literal(v, true));
}
bool solver::decide(bool_var& var, lbool& phase) {
for (auto const& th : m_solvers)
if (th->decide(var, phase))
return true;
return false;
}
bool solver::get_case_split(bool_var& var, lbool& phase) {
for (auto const& th : m_solvers)
if (th->get_case_split(var, phase))
return true;
return false;
}
void solver::asserted(literal l) {
m_relevancy.asserted(l);
if (!m_relevancy.is_relevant(l))
return;
expr* e = m_bool_var2expr.get(l.var(), nullptr);
TRACE("euf", tout << "asserted: " << l << "@" << s().scope_lvl() << " := " << mk_bounded_pp(e, m) << "\n";);
if (!e)
return;
euf::enode* n = m_egraph.find(e);
if (!n)
return;
bool sign = l.sign();
lbool old_value = n->value();
lbool new_value = sign ? l_false : l_true;
m_egraph.set_value(n, new_value, justification::external(to_ptr(l)));
if (old_value == l_undef && n->cgc_enabled()) {
for (enode* k : enode_class(n)) {
if (k->bool_var() == sat::null_bool_var)
continue;
if (k->value() == new_value)
continue;
literal litk(k->bool_var(), sign);
if (s().value(litk) == l_true)
continue;
auto& c = lit_constraint(n);
propagate(litk, c.to_index());
if (s().value(litk) == l_false)
return;
}
}
for (auto const& th : enode_th_vars(n))
m_id2solver[th.get_id()]->asserted(l);
size_t* c = to_ptr(l);
SASSERT(is_literal(c));
SASSERT(l == get_literal(c));
if (n->merge_tf()) {
euf::enode* nb = sign ? mk_false() : mk_true();
m_egraph.merge(n, nb, c);
}
if (n->is_equality()) {
SASSERT(!m.is_iff(e));
SASSERT(m.is_eq(e));
if (sign)
m_egraph.new_diseq(n);
else
m_egraph.merge(n->get_arg(0), n->get_arg(1), c);
}
}
constraint& solver::lit_constraint(enode* n) {
void* mem = get_region().allocate(sat::constraint_base::obj_size(sizeof(constraint)));
auto* c = new (sat::constraint_base::ptr2mem(mem)) constraint(n);
sat::constraint_base::initialize(mem, this);
return *c;
}
bool solver::can_propagate() {
return m_egraph.can_propagate();
}
bool solver::unit_propagate() {
bool propagated = false;
while (!s().inconsistent()) {
if (m_relevancy.enabled())
m_relevancy.propagate();
if (m_egraph.inconsistent()) {
set_conflict(conflict_constraint().to_index());
return true;
}
bool propagated1 = false;
if (m_egraph.propagate()) {
propagate_th_eqs();
propagated1 = true;
}
for (unsigned i = 0; i < m_solvers.size(); ++i)
if (m_solvers[i]->unit_propagate())
propagated1 = true;
if (propagated1) {
propagated = true;
continue;
}
if (m_relevancy.enabled() && m_relevancy.can_propagate())
continue;
break;
}
DEBUG_CODE(if (!propagated && !s().inconsistent()) check_missing_eq_propagation(););
return propagated;
}
void solver::propagate_literal(enode* n, enode* ante) {
expr* e = n->get_expr();
expr* a = nullptr, *b = nullptr;
bool_var v = n->bool_var();
if (v == sat::null_bool_var)
return;
SASSERT(m.is_bool(e));
size_t cnstr;
literal lit;
if (!ante) {
VERIFY(m.is_eq(e, a, b));
cnstr = eq_constraint().to_index();
lit = literal(v, false);
}
else {
//
// There are the following three cases for propagation of literals
//
// 1. n == ante is true from equallity, ante = true/false
// 2. n == ante is true from equality, value(ante) != l_undef
// 3. value(n) != l_undef, ante = true/false, merge_tf is set on n
//
lbool val = ante->value();
if (val == l_undef) {
SASSERT(m.is_value(ante->get_expr()));
val = m.is_true(ante->get_expr()) ? l_true : l_false;
}
auto& c = lit_constraint(ante);
cnstr = c.to_index();
lit = literal(v, val == l_false);
}
unsigned lvl = s().scope_lvl();
CTRACE("euf", s().value(lit) != l_true, tout << lit << " " << s().value(lit) << "@" << lvl << " " << mk_bounded_pp(a, m) << " = " << mk_bounded_pp(b, m) << "\n";);
if (s().value(lit) == l_false && m_ackerman && a && b)
m_ackerman->cg_conflict_eh(a, b);
switch (s().value(lit)) {
case l_true:
if (!n->merge_tf())
break;
if (m.is_value(n->get_root()->get_expr()))
break;
if (!ante)
ante = mk_true();
m_egraph.merge(n, ante, to_ptr(lit));
break;
case l_undef:
case l_false:
s().assign(lit, sat::justification::mk_ext_justification(lvl, cnstr));
break;
}
}
bool solver::is_self_propagated(th_eq const& e) {
if (!e.is_eq())
return false;
m_egraph.begin_explain();
m_explain.reset();
m_egraph.explain_eq(m_explain, nullptr, e.child(), e.root());
m_egraph.end_explain();
if (m_egraph.uses_congruence())
return false;
for (auto p : m_explain) {
if (is_literal(p))
return false;
size_t idx = get_justification(p);
auto* ext = sat::constraint_base::to_extension(idx);
if (ext->get_id() != e.id())
return false;
if (ext->enable_self_propagate())
return false;
}
return true;
}
void solver::propagate_th_eqs() {
for (; m_egraph.has_th_eq() && !s().inconsistent() && !m_egraph.inconsistent(); m_egraph.next_th_eq()) {
th_eq eq = m_egraph.get_th_eq();
if (!eq.is_eq())
m_id2solver[eq.id()]->new_diseq_eh(eq);
else if (!is_self_propagated(eq))
m_id2solver[eq.id()]->new_eq_eh(eq);
}
}
constraint& solver::mk_constraint(constraint*& c, constraint::kind_t k) {
if (!c) {
void* mem = memory::allocate(sat::constraint_base::obj_size(sizeof(constraint)));
c = new (sat::constraint_base::ptr2mem(mem)) constraint(k);
sat::constraint_base::initialize(mem, this);
}
return *c;
}
enode* solver::mk_true() {
VERIFY(visit(m.mk_true()));
return m_egraph.find(m.mk_true());
}
enode* solver::mk_false() {
VERIFY(visit(m.mk_false()));
return m_egraph.find(m.mk_false());
}
sat::check_result solver::check() {
++m_stats.m_final_checks;
TRACE("euf", s().display(tout););
TRACE("final_check", s().display(tout););
bool give_up = false;
bool cont = false;
if (unit_propagate())
return sat::check_result::CR_CONTINUE;
unsigned num_nodes = m_egraph.num_nodes();
auto apply_solver = [&](th_solver* e) {
switch (e->check()) {
case sat::check_result::CR_CONTINUE: cont = true; break;
case sat::check_result::CR_GIVEUP: m_reason_unknown = "incomplete theory " + e->name().str(); TRACE("euf", tout << "give up " << e->name() << "\n"); give_up = true; break;
default: break;
}
};
if (merge_shared_bools())
cont = true;
for (unsigned i = 0; i < m_solvers.size(); ++i) {
auto* e = m_solvers[i];
if (!m.inc()) {
m_reason_unknown = "canceled";
return sat::check_result::CR_GIVEUP;
}
if (e == m_qsolver)
continue;
apply_solver(e);
if (s().inconsistent())
return sat::check_result::CR_CONTINUE;
}
if (s().inconsistent())
return sat::check_result::CR_CONTINUE;
if (cont)
return sat::check_result::CR_CONTINUE;
if (m_qsolver && !m_config.m_arith_ignore_int)
apply_solver(m_qsolver);
if (num_nodes < m_egraph.num_nodes())
return sat::check_result::CR_CONTINUE;
if (cont)
return sat::check_result::CR_CONTINUE;
TRACE("after_search", s().display(tout););
if (give_up)
return sat::check_result::CR_GIVEUP;
if (m_qsolver && m_config.m_arith_ignore_int)
return sat::check_result::CR_GIVEUP;
return sat::check_result::CR_DONE;
}
bool solver::merge_shared_bools() {
bool merged = false;
for (unsigned i = m_egraph.nodes().size(); i-- > 0; ) {
euf::enode* n = m_egraph.nodes()[i];
if (!m.is_bool(n->get_expr()) || !is_shared(n))
continue;
if (n->value() == l_true && n->cgc_enabled() && !m.is_true(n->get_root()->get_expr())) {
TRACE("euf", tout << "merge " << bpp(n) << "\n");
m_egraph.merge(n, mk_true(), to_ptr(sat::literal(n->bool_var())));
merged = true;
}
if (n->value() == l_false && n->cgc_enabled() && !m.is_false(n->get_root()->get_expr())) {
TRACE("euf", tout << "merge " << bpp(n) << "\n");
m_egraph.merge(n, mk_false(), to_ptr(~sat::literal(n->bool_var())));
merged = true;
}
}
CTRACE("euf", merged, tout << "shared bools merged\n");
return merged;
}
void solver::push() {
si.push();
scope s(m_var_trail.size());
m_scopes.push_back(s);
m_trail.push_scope();
for (auto* e : m_solvers)
e->push();
m_egraph.push();
m_relevancy.push();
}
void solver::pop(unsigned n) {
start_reinit(n);
m_trail.pop_scope(n);
for (auto* e : m_solvers)
e->pop(n);
si.pop(n);
m_egraph.pop(n);
m_relevancy.pop(n);
scope const & sc = m_scopes[m_scopes.size() - n];
for (unsigned i = m_var_trail.size(); i-- > sc.m_var_lim; ) {
bool_var v = m_var_trail[i];
m_bool_var2expr[v] = nullptr;
s().set_non_external(v);
}
m_var_trail.shrink(sc.m_var_lim);
m_scopes.shrink(m_scopes.size() - n);
SASSERT(m_egraph.num_scopes() == m_scopes.size());
TRACE("euf_verbose", display(tout << "pop to: " << m_scopes.size() << "\n"););
}
void solver::user_push() {
push();
}
void solver::user_pop(unsigned n) {
pop(n);
}
void solver::start_reinit(unsigned n) {
m_reinit.reset();
for (sat::bool_var v : s().get_vars_to_reinit()) {
expr* e = bool_var2expr(v);
if (e)
m_reinit.push_back(reinit_t(expr_ref(e, m), get_enode(e)?get_enode(e)->generation():0, v));
}
}
/**
* After a pop has completed, re-initialize the association between Boolean variables
* and the theories by re-creating the expression/variable mapping used for Booleans
* and replaying internalization.
*/
void solver::finish_reinit() {
if (m_reinit.empty())
return;
struct scoped_set_replay {
solver& s;
obj_map m;
scoped_set_replay(solver& s) :s(s) {
s.si.set_expr2var_replay(&m);
}
~scoped_set_replay() {
s.si.set_expr2var_replay(nullptr);
}
};
scoped_set_replay replay(*this);
scoped_suspend_rlimit suspend_rlimit(m.limit());
for (auto const& [e, generation, v] : m_reinit)
replay.m.insert(e, v);
TRACE("euf", for (auto const& kv : replay.m) tout << "b" << kv.m_value << "\n";);
for (auto const& [e, generation, v] : m_reinit) {
scoped_generation _sg(*this, generation);
TRACE("euf", tout << "replay: b" << v << " #" << e->get_id() << " " << mk_bounded_pp(e, m) << " " << si.is_bool_op(e) << "\n";);
sat::literal lit;
if (si.is_bool_op(e))
lit = literal(replay.m[e], false);
else
lit = si.internalize(e);
VERIFY(lit.var() == v);
if (!m_egraph.find(e) && !m.is_iff(e) && !m.is_or(e) && !m.is_and(e) && !m.is_not(e) && !m.is_implies(e) && !m.is_xor(e)) {
ptr_buffer args;
if (is_app(e))
for (expr* arg : *to_app(e))
args.push_back(e_internalize(arg));
internalize(e);
if (!m_egraph.find(e))
mk_enode(e, args.size(), args.data());
}
else
attach_lit(lit, e);
}
for (auto const& [e, v] : replay.m)
if (si.is_bool_op(e) && !si.is_cached(to_app(e), sat::literal(v, false)))
si.cache(to_app(e), sat::literal(v, false));
if (relevancy_enabled())
for (auto const& [e, generation, v] : m_reinit)
if (si.is_bool_op(e))
relevancy_reinit(e);
TRACE("euf", display(tout << "replay done\n"););
}
/**
* Boolean structure needs to be replayed for relevancy tracking.
* Main cases for replaying Boolean functions are included. When a replay
* is not supported, we just disable relevancy.
*/
void solver::relevancy_reinit(expr* e) {
TRACE("euf", tout << "internalize again " << mk_pp(e, m) << "\n";);
if (to_app(e)->get_family_id() != m.get_basic_family_id()) {
disable_relevancy(e);
return;
}
auto lit = si.internalize(e);
switch (to_app(e)->get_decl_kind()) {
case OP_NOT: {
auto lit2 = si.internalize(to_app(e)->get_arg(0));
add_aux(lit, lit2);
add_aux(~lit, ~lit2);
break;
}
case OP_EQ: {
if (to_app(e)->get_num_args() != 2) {
disable_relevancy(e);
return;
}
auto lit1 = si.internalize(to_app(e)->get_arg(0));
auto lit2 = si.internalize(to_app(e)->get_arg(1));
add_aux(~lit, ~lit1, lit2);
add_aux(~lit, lit1, ~lit2);
add_aux(lit, lit1, lit2);
add_aux(lit, ~lit1, ~lit2);
break;
}
case OP_OR: {
sat::literal_vector lits;
for (expr* arg : *to_app(e))
lits.push_back(si.internalize(arg));
for (auto lit2 : lits)
add_aux(~lit2, lit);
lits.push_back(~lit);
add_aux(lits);
break;
}
case OP_AND: {
sat::literal_vector lits;
for (expr* arg : *to_app(e))
lits.push_back(~si.internalize(arg));
for (auto nlit2 : lits)
add_aux(~lit, ~nlit2);
lits.push_back(lit);
add_aux(lits);
break;
}
case OP_TRUE:
add_aux(lit);
break;
case OP_FALSE:
add_aux(~lit);
break;
case OP_ITE: {
auto lit1 = si.internalize(to_app(e)->get_arg(0));
auto lit2 = si.internalize(to_app(e)->get_arg(1));
auto lit3 = si.internalize(to_app(e)->get_arg(2));
add_aux(~lit, ~lit1, lit2);
add_aux(~lit, lit1, lit3);
add_aux(lit, ~lit1, ~lit2);
add_aux(lit, lit1, ~lit3);
break;
}
case OP_XOR: {
if (to_app(e)->get_num_args() != 2) {
disable_relevancy(e);
break;
}
auto lit1 = si.internalize(to_app(e)->get_arg(0));
auto lit2 = si.internalize(to_app(e)->get_arg(1));
add_aux(lit, ~lit1, lit2);
add_aux(lit, lit1, ~lit2);
add_aux(~lit, lit1, lit2);
add_aux(~lit, ~lit1, ~lit2);
break;
}
case OP_IMPLIES: {
if (to_app(e)->get_num_args() != 2) {
disable_relevancy(e);
break;
}
auto lit1 = si.internalize(to_app(e)->get_arg(0));
auto lit2 = si.internalize(to_app(e)->get_arg(1));
add_aux(~lit, ~lit1, lit2);
add_aux(lit, lit1);
add_aux(lit, ~lit2);
break;
}
default:
UNREACHABLE();
}
}
bool solver::is_relevant(bool_var v) const {
if (m_relevancy.enabled())
return m_relevancy.is_relevant(v);
auto* e = bool_var2enode(v);
return !e || is_relevant(e);
}
void solver::relevant_eh(euf::enode* n) {
if (m_qsolver)
m_qsolver->relevant_eh(n);
for (auto const& thv : enode_th_vars(n)) {
auto* th = m_id2solver.get(thv.get_id(), nullptr);
if (th && th != m_qsolver)
th->relevant_eh(n);
}
}
bool solver::enable_ackerman_axioms(expr* e) const {
euf::enode* n = get_enode(e);
if (!n)
return false;
for (auto const& thv : enode_th_vars(n)) {
auto* th = m_id2solver.get(thv.get_id(), nullptr);
if (th && !th->enable_ackerman_axioms(n))
return false;
}
return true;
}
bool solver::is_fixed(euf::enode* n, expr_ref& val, sat::literal_vector& explain) {
if (n->bool_var() != sat::null_bool_var) {
switch (s().value(n->bool_var())) {
case l_true:
val = m.mk_true();
explain.push_back(sat::literal(n->bool_var()));
return true;
case l_false:
val = m.mk_false();
explain.push_back(~sat::literal(n->bool_var()));
return true;
default:
return false;
}
}
for (auto const& thv : enode_th_vars(n)) {
auto* th = m_id2solver.get(thv.get_id(), nullptr);
if (th && th->is_fixed(thv.get_var(), val, explain))
return true;
}
return false;
}
void solver::pre_simplify() {
for (auto* e : m_solvers)
e->pre_simplify();
}
void solver::simplify() {
for (auto* e : m_solvers)
e->simplify();
if (m_ackerman)
m_ackerman->propagate();
}
bool solver::should_research(sat::literal_vector const& core) {
bool result = false;
for (auto* e : m_solvers)
if (e->should_research(core))
result = true;
return result;
}
void solver::add_assumptions(sat::literal_set& assumptions) {
for (auto* e : m_solvers)
e->add_assumptions(assumptions);
}
bool solver::tracking_assumptions() {
for (auto* e : m_solvers)
if (e->tracking_assumptions())
return true;
return false;
}
void solver::clauses_modifed() {
for (auto* e : m_solvers)
e->clauses_modifed();
}
lbool solver::get_phase(bool_var v) {
auto* ext = bool_var2solver(v);
if (ext)
return ext->get_phase(v);
return l_undef;
}
bool solver::set_root(literal l, literal r) {
if (m_relevancy.enabled())
return false;
bool ok = true;
for (auto* s : m_solvers)
if (!s->set_root(l, r))
ok = false;
if (!ok)
return false;
expr* e = bool_var2expr(l.var());
if (!e)
return true;
if (m.is_eq(e) && !m.is_iff(e))
ok = false;
euf::enode* n = get_enode(e);
if (n && n->cgc_enabled())
ok = false;
(void)ok;
TRACE("euf", tout << ok << " " << l << " -> " << r << "\n";);
// roots cannot be eliminated as long as the egraph contains the expressions.
return false;
}
void solver::flush_roots() {
for (auto* s : m_solvers)
s->flush_roots();
}
std::ostream& solver::display(std::ostream& out) const {
m_egraph.display(out);
out << "bool-vars\n";
for (unsigned v : m_var_trail) {
expr* e = m_bool_var2expr[v];
out << v << (is_relevant(v)?"":"n") << ": " << e->get_id() << " " << m_solver->value(v) << " " << mk_bounded_pp(e, m, 1);
euf::enode* n = m_egraph.find(e);
if (n) {
for (auto const& th : enode_th_vars(n))
out << " " << m_id2solver[th.get_id()]->name();
}
out << "\n";
}
for (auto* e : m_solvers)
e->display(out);
return out;
}
std::ostream& solver::display_justification_ptr(std::ostream& out, size_t* j) const {
if (is_literal(j))
return out << "sat: " << get_literal(j);
else
return display_justification(out, get_justification(j));
}
std::ostream& solver::display_justification(std::ostream& out, ext_justification_idx idx) const {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext == this) {
constraint& c = constraint::from_idx(idx);
switch (c.kind()) {
case constraint::kind_t::conflict:
return out << "euf conflict";
case constraint::kind_t::eq:
return out << "euf equality propagation";
case constraint::kind_t::lit: {
euf::enode* n = c.node();
return out << "euf literal propagation " << (sat::literal(n->bool_var(), n->value() == l_false)) << " " << m_egraph.bpp(n);
}
default:
UNREACHABLE();
return out;
}
}
else
return ext->display_justification(out, idx);
return out;
}
std::ostream& solver::display_constraint(std::ostream& out, ext_constraint_idx idx) const {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this)
return ext->display_constraint(out, idx);
return display_justification(out, idx);
}
void solver::collect_statistics(statistics& st) const {
m_egraph.collect_statistics(st);
for (auto* e : m_solvers)
e->collect_statistics(st);
m_smt_proof_checker.collect_statistics(st);
st.update("euf ackerman", m_stats.m_ackerman);
st.update("euf final check", m_stats.m_final_checks);
}
enode* solver::copy(solver& dst_ctx, enode* src_n) {
if (!src_n)
return nullptr;
ast_translation tr(m, dst_ctx.get_manager(), false);
expr* e1 = src_n->get_expr();
expr* e2 = tr(e1);
euf::enode* n2 = dst_ctx.get_enode(e2);
SASSERT(n2);
return n2;
}
sat::extension* solver::copy(sat::solver* s) {
auto* r = alloc(solver, *m_to_m, *m_to_si);
r->m_config = m_config;
sat::literal true_lit = sat::null_literal;
if (s->init_trail_size() > 0)
true_lit = s->trail_literal(0);
std::function copy_justification = [&](void* x) {
SASSERT(true_lit != sat::null_literal);
return (void*)(r->to_ptr(true_lit));
};
r->set_solver(s);
r->m_egraph.copy_from(m_egraph, copy_justification);
for (euf::enode* n : r->m_egraph.nodes()) {
auto b = n->bool_var();
if (b != sat::null_bool_var) {
r->m_bool_var2expr.setx(b, n->get_expr(), nullptr);
SASSERT(r->m.is_bool(n->get_sort()));
IF_VERBOSE(20, verbose_stream() << "set bool_var " << b << " " << r->bpp(n) << " " << mk_bounded_pp(n->get_expr(), m) << "\n");
}
}
for (auto* s_orig : m_id2solver) {
if (s_orig) {
auto* s_clone = s_orig->clone(*r);
r->add_solver(s_clone);
s_clone->set_solver(s);
}
}
return r;
}
void solver::find_mutexes(literal_vector& lits, vector & mutexes) {
for (auto* e : m_solvers)
e->find_mutexes(lits, mutexes);
}
void solver::gc() {
for (auto* e : m_solvers)
e->gc();
}
void solver::pop_reinit() {
finish_reinit();
for (auto* e : m_solvers)
e->pop_reinit();
#if 0
for (enode* n : m_egraph.nodes()) {
if (n->bool_var() != sat::null_bool_var && s().is_free(n->bool_var()))
std::cout << "has free " << n->bool_var() << "\n";
}
#endif
}
bool solver::validate() {
for (auto* e : m_solvers)
if (!e->validate())
return false;
check_eqc_bool_assignment();
check_missing_bool_enode_propagation();
check_missing_eq_propagation();
m_egraph.invariant();
return true;
}
void solver::init_use_list(sat::ext_use_list& ul) {
for (auto* e : m_solvers)
e->init_use_list(ul);
}
bool solver::is_blocked(literal l, ext_constraint_idx idx) {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this)
return ext->is_blocked(l, idx);
return false;
}
bool solver::check_model(sat::model const& m) const {
for (auto* e : m_solvers)
if (!e->check_model(m))
return false;
return true;
}
void solver::gc_vars(unsigned num_vars) {
for (auto* e : m_solvers)
e->gc_vars(num_vars);
}
double solver::get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const {
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext);
return (ext == this) ? 0 : ext->get_reward(l, idx, occs);
}
bool solver::is_extended_binary(ext_justification_idx idx, literal_vector& r) {
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext);
return (ext != this) && ext->is_extended_binary(idx, r);
}
void solver::init_ackerman() {
if (m_ackerman)
return;
if (m_config.m_dack == dyn_ack_strategy::DACK_DISABLED)
return;
m_ackerman = alloc(ackerman, *this, m);
std::function used_eq = [&](expr* a, expr* b, expr* lca) {
m_ackerman->used_eq_eh(a, b, lca);
};
std::function used_cc = [&](app* a, app* b) {
m_ackerman->used_cc_eh(a, b);
};
m_egraph.set_used_eq(used_eq);
m_egraph.set_used_cc(used_cc);
}
bool solver::to_formulas(std::function& l2e, expr_ref_vector& fmls) {
for (auto* th : m_solvers) {
if (!th->to_formulas(l2e, fmls))
return false;
}
for (euf::enode* n : m_egraph.nodes()) {
if (!n->is_root())
fmls.push_back(m.mk_eq(n->get_expr(), n->get_root()->get_expr()));
}
return true;
}
bool solver::extract_pb(std::function& card,
std::function& pb) {
for (auto* e : m_solvers)
if (!e->extract_pb(card, pb))
return false;
return true;
}
void solver::register_on_clause(
void* ctx,
user_propagator::on_clause_eh_t& on_clause) {
m_on_clause_ctx = ctx;
m_on_clause = on_clause;
init_proof();
}
void solver::user_propagate_init(
void* ctx,
user_propagator::push_eh_t& push_eh,
user_propagator::pop_eh_t& pop_eh,
user_propagator::fresh_eh_t& fresh_eh) {
m_user_propagator = alloc(user_solver::solver, *this);
m_user_propagator->add(ctx, push_eh, pop_eh, fresh_eh);
add_solver(m_user_propagator);
}
bool solver::watches_fixed(enode* n) const {
return m_user_propagator && m_user_propagator->has_fixed() && n->get_th_var(m_user_propagator->get_id()) != null_theory_var;
}
void solver::assign_fixed(enode* n, expr* val, unsigned sz, literal const* explain) {
theory_var v = n->get_th_var(m_user_propagator->get_id());
m_user_propagator->new_fixed_eh(v, val, sz, explain);
}
}