z3-z3-4.13.0.src.sat.smt.q_ematch.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_ematch.cpp
Abstract:
E-matching quantifier instantiation plugin
Author:
Nikolaj Bjorner (nbjorner) 2021-01-24
Todo:
- nested quantifiers
- non-cnf quantifiers (handled in q_solver)
Done:
- clausify
- propagate without instantiations, produce explanations for eval
- generations
- insert instantiations into priority queue
- cache instantiations and substitutions
--*/
#include "ast/ast_util.h"
#include "ast/rewriter/var_subst.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/normal_forms/pull_quant.h"
#include "solver/solver.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/q_mam.h"
#include "sat/smt/q_ematch.h"
namespace q {
struct ematch::scoped_mark_reset {
ematch& e;
scoped_mark_reset(ematch& e): e(e) {}
~scoped_mark_reset() { e.m_mark.reset(); }
};
ematch::ematch(euf::solver& ctx, solver& s):
ctx(ctx),
m_qs(s),
m(ctx.get_manager()),
m_eval(ctx),
m_qstat_gen(m, ctx.get_region()),
m_inst_queue(*this, ctx),
m_infer_patterns(m, ctx.get_config()),
m_new_defs(m),
m_new_proofs(m),
m_dn(m),
m_nnf(m, m_dn)
{
std::function _on_merge =
[&](euf::enode* root, euf::enode* other) {
on_merge(root, other);
};
std::function _on_make =
[&](euf::enode* n) {
m_mam->add_node(n, false);
};
if (ctx.get_config().m_ematching) {
ctx.get_egraph().set_on_merge(_on_merge);
if (!ctx.relevancy_enabled())
ctx.get_egraph().set_on_make(_on_make);
}
m_mam = mam::mk(ctx, *this);
}
void ematch::relevant_eh(euf::enode* n) {
if (ctx.relevancy_enabled())
m_mam->add_node(n, false);
}
void ematch::ensure_ground_enodes(expr* e) {
mam::ground_subterms(e, m_ground);
for (expr* g : m_ground)
m_qs.e_internalize(g);
}
void ematch::ensure_ground_enodes(clause const& c) {
quantifier* q = c.q();
unsigned num_patterns = q->get_num_patterns();
for (unsigned i = 0; i < num_patterns; i++)
ensure_ground_enodes(q->get_pattern(i));
for (auto const& lit : c.m_lits) {
ensure_ground_enodes(lit.lhs);
ensure_ground_enodes(lit.rhs);
}
}
/**
* Create a justification for binding b.
* The justification involves equalities in the E-graph that have
* explanations. Retrieve the explanations while the justification
* is created to ensure the justification trail is well-founded
* during conflict resolution.
*/
sat::ext_justification_idx ematch::mk_justification(unsigned idx, unsigned generation, clause& c, euf::enode* const* b) {
void* mem = ctx.get_region().allocate(justification::get_obj_size());
sat::constraint_base::initialize(mem, &m_qs);
bool sign = false;
expr* l = nullptr, * r = nullptr;
lit lit(expr_ref(l, m), expr_ref(r, m), sign);
if (idx != UINT_MAX)
lit = c[idx];
m_explain.reset();
m_explain_cc.reset();
ctx.get_egraph().begin_explain();
ctx.reset_explain();
euf::cc_justification* cc = ctx.use_drat() ? &m_explain_cc : nullptr;
for (auto const& [a, b] : m_evidence) {
SASSERT(a->get_root() == b->get_root() || ctx.get_egraph().are_diseq(a, b));
if (a->get_root() == b->get_root())
ctx.get_egraph().explain_eq(m_explain, cc, a, b);
else
ctx.explain_diseq(m_explain, cc, a, b);
}
ctx.get_egraph().end_explain();
size_t** ev = static_cast(ctx.get_region().allocate(sizeof(size_t*) * m_explain.size()));
for (unsigned i = m_explain.size(); i-- > 0; )
ev[i] = m_explain[i];
auto* constraint = new (sat::constraint_base::ptr2mem(mem)) justification(lit, c, b, generation, m_explain.size(), ev);
return constraint->to_index();
}
void ematch::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) {
justification& j = justification::from_index(idx);
for (unsigned i = 0; i < j.m_num_ex; ++i)
ctx.add_explain(j.m_explain[i]);
r.push_back(j.m_clause.m_literal);
}
quantifier_ref ematch::nnf_skolem(quantifier* q) {
SASSERT(is_forall(q));
expr_ref r(m);
proof_ref p(m);
m_new_defs.reset();
m_new_proofs.reset();
m_nnf(q, m_new_defs, m_new_proofs, r, p);
SASSERT(is_forall(r));
pull_quant pull(m);
pull(r, r, p);
SASSERT(is_forall(r));
for (expr* d : m_new_defs)
m_qs.add_unit(m_qs.mk_literal(d));
CTRACE("q", r != q, tout << mk_pp(q, m) << " -->\n" << r << "\n" << m_new_defs << "\n";);
return quantifier_ref(to_quantifier(r), m);
}
std::ostream& ematch::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
auto& j = justification::from_index(idx);
auto& c = j.m_clause;
out << "ematch: ";
for (auto const& lit : c.m_lits)
lit.display(out) << " ";
unsigned num_decls = c.num_decls();
for (unsigned i = 0; i < num_decls; ++i)
out << ctx.bpp(j.m_binding[i]) << " ";
out << "-> ";
lit lit(expr_ref(j.m_lhs, m), expr_ref(j.m_rhs, m), j.m_sign);
if (j.m_lhs)
lit.display(out);
else
out << "false";
return out;
}
struct restore_watch : public trail {
vector& v;
unsigned idx, offset;
restore_watch(vector& v, unsigned idx):
v(v), idx(idx), offset(v[idx].size()) {}
void undo() override {
v[idx].shrink(offset);
}
};
void ematch::on_merge(euf::enode* root, euf::enode* other) {
TRACE("q", tout << "on-merge " << ctx.bpp(root) << " " << ctx.bpp(other) << "\n";);
SASSERT(root->get_root() == other->get_root());
unsigned root_id = root->get_expr_id();
unsigned other_id = other->get_expr_id();
m_watch.reserve(std::max(root_id, other_id) + 1);
insert_to_propagate(root_id);
insert_to_propagate(other_id);
if (!m_watch[other_id].empty()) {
ctx.push(restore_watch(m_watch, root_id));
m_watch[root_id].append(m_watch[other_id]);
}
m_mam->on_merge(root, other);
if (m_lazy_mam)
m_lazy_mam->on_merge(root, other);
}
// watch only nodes introduced in bindings or ground arguments of functions
// or functions that have been inserted.
void ematch::add_watch(euf::enode* n, unsigned clause_idx) {
unsigned root_id = n->get_root_id();
m_watch.reserve(root_id + 1);
ctx.push(restore_watch(m_watch, root_id));
m_watch[root_id].push_back(clause_idx);
}
void ematch::init_watch(expr* e, unsigned clause_idx) {
ptr_buffer todo;
scoped_mark_reset _sr(*this);
todo.push_back(e);
while (!todo.empty()) {
expr* t = todo.back();
todo.pop_back();
if (m_mark.is_marked(t))
continue;
m_mark.mark(t);
if (is_ground(t)) {
add_watch(ctx.get_egraph().find(t), clause_idx);
continue;
}
if (!is_app(t))
continue;
for (expr* arg : *to_app(t))
todo.push_back(arg);
}
}
void ematch::init_watch(clause& c) {
unsigned idx = c.index();
for (auto const& lit : c.m_lits) {
if (!is_ground(lit.lhs))
init_watch(lit.lhs, idx);
if (!is_ground(lit.rhs))
init_watch(lit.rhs, idx);
}
}
struct ematch::remove_binding : public trail {
euf::solver& ctx;
clause& c;
binding* b;
remove_binding(euf::solver& ctx, clause& c, binding* b): ctx(ctx), c(c), b(b) {}
void undo() override {
SASSERT(binding::contains(c.m_bindings, b));
binding::remove_from(c.m_bindings, b);
binding::detach(b);
}
};
struct ematch::insert_binding : public trail {
euf::solver& ctx;
clause& c;
binding* b;
insert_binding(euf::solver& ctx, clause& c, binding* b): ctx(ctx), c(c), b(b) {}
void undo() override {
SASSERT(!c.m_bindings || c.m_bindings->invariant());
binding::push_to_front(c.m_bindings, b);
SASSERT(!c.m_bindings || c.m_bindings->invariant());
}
};
binding* ematch::tmp_binding(clause& c, app* pat, euf::enode* const* b) {
if (c.num_decls() > m_tmp_binding_capacity) {
void* mem = memory::allocate(sizeof(binding) + c.num_decls() * sizeof(euf::enode*));
m_tmp_binding = new (mem) binding(c, pat, 0, 0, 0);
m_tmp_binding_capacity = c.num_decls();
}
for (unsigned i = c.num_decls(); i-- > 0; )
m_tmp_binding->m_nodes[i] = b[i];
m_tmp_binding->m_pattern = pat;
m_tmp_binding->c = &c;
return m_tmp_binding.get();
}
binding* ematch::alloc_binding(clause& c, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_top, unsigned max_top) {
binding* b = tmp_binding(c, pat, _binding);
if (m_bindings.contains(b))
return nullptr;
for (unsigned i = c.num_decls(); i-- > 0; )
b->m_nodes[i] = b->m_nodes[i]->get_root();
if (m_bindings.contains(b))
return nullptr;
unsigned n = c.num_decls();
unsigned sz = sizeof(binding) + sizeof(euf::enode* const*) * n;
void* mem = ctx.get_region().allocate(sz);
b = new (mem) binding(c, pat, max_generation, min_top, max_top);
b->init(b);
for (unsigned i = 0; i < n; ++i)
b->m_nodes[i] = _binding[i];
m_bindings.insert(b);
ctx.push(insert_map(m_bindings, b));
return b;
}
euf::enode* const* ematch::copy_nodes(clause& c, euf::enode* const* nodes) {
unsigned sz = sizeof(euf::enode* const*) * c.num_decls();
euf::enode** new_nodes = (euf::enode**)ctx.get_region().allocate(sz);
for (unsigned i = 0; i < c.num_decls(); ++i)
new_nodes[i] = nodes[i];
return new_nodes;
}
void ematch::on_binding(quantifier* q, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_gen, unsigned max_gen) {
unsigned idx = m_q2clauses[q];
clause& c = *m_clauses[idx];
bool new_propagation = false;
binding* b = alloc_binding(c, pat, _binding, max_generation, min_gen, max_gen);
if (!b)
return;
TRACE("q", b->display(ctx, tout << "on-binding " << mk_pp(q, m) << "\n") << "\n";);
if (propagate(false, _binding, max_generation, c, new_propagation))
return;
binding::push_to_front(c.m_bindings, b);
ctx.push(remove_binding(ctx, c, b));
++m_stats.m_num_delayed_bindings;
}
bool ematch::propagate(bool is_owned, euf::enode* const* binding, unsigned max_generation, clause& c, bool& propagated) {
if (!m_enable_propagate)
return false;
if (ctx.s().inconsistent())
return true;
unsigned idx = UINT_MAX;
m_evidence.reset();
lbool ev = m_eval(binding, c, idx, m_evidence);
if (ev == l_true) {
++m_stats.m_num_redundant;
return true;
}
if (ev == l_undef && idx == UINT_MAX) {
unsigned clause_idx = c.index();
for (euf::enode* n : m_eval.get_watch())
add_watch(n, clause_idx);
for (unsigned j = c.num_decls(); j-- > 0; )
add_watch(binding[j], clause_idx);
return false;
}
if (ev == l_undef && max_generation > m_generation_propagation_threshold)
return false;
if (!is_owned)
binding = copy_nodes(c, binding);
auto j_idx = mk_justification(idx, max_generation, c, binding);
if (is_owned)
propagate(ev == l_false, idx, j_idx);
else
m_prop_queue.push_back(prop(ev == l_false, idx, j_idx));
propagated = true;
return true;
}
void ematch::propagate(bool is_conflict, unsigned idx, sat::ext_justification_idx j_idx) {
if (is_conflict)
++m_stats.m_num_conflicts;
else
++m_stats.m_num_propagations;
auto& j = justification::from_index(j_idx);
sat::literal_vector lits;
lits.push_back(~j.m_clause.m_literal);
for (unsigned i = 0; i < j.m_clause.size(); ++i)
lits.push_back(instantiate(j.m_clause, j.m_generation, j.m_binding, j.m_clause[i]));
m_qs.log_instantiation(lits, &j);
euf::th_proof_hint* ph = nullptr;
if (ctx.use_drat())
ph = q_proof_hint::mk(ctx, m_ematch, j.m_generation, lits, j.m_clause.num_decls(), j.m_binding);
m_qs.add_clause(lits, ph);
}
bool ematch::flush_prop_queue() {
if (m_prop_queue.empty())
return false;
for (unsigned i = 0; i < m_prop_queue.size(); ++i) {
auto const& [is_conflict, idx, j_idx] = m_prop_queue[i];
propagate(is_conflict, idx, j_idx);
}
m_prop_queue.reset();
return true;
}
void ematch::instantiate(binding& b) {
if (m_stats.m_num_instantiations > ctx.get_config().m_qi_max_instances)
return;
unsigned max_generation = b.m_max_generation;
max_generation = std::max(max_generation, b.c->m_stat->get_generation());
b.c->m_stat->update_max_generation(max_generation);
m_stats.m_num_instantiations++;
m_inst_queue.insert(&b);
}
void ematch::add_instantiation(clause& c, binding& b, sat::literal lit) {
m_evidence.reset();
ctx.propagate(lit, mk_justification(UINT_MAX, b.m_max_generation, c, b.nodes()));
m_qs.log_instantiation(~c.m_literal, lit);
}
sat::literal ematch::instantiate(clause& c, unsigned generation, euf::enode* const* binding, lit const& l) {
expr_ref_vector _binding(m);
for (unsigned i = 0; i < c.num_decls(); ++i)
_binding.push_back(binding[i]->get_expr());
var_subst subst(m);
euf::solver::scoped_generation sg(ctx, generation + 1);
auto sub = [&](expr* e) {
expr_ref r = subst(e, _binding);
//ctx.rewrite(r);
return l.sign ? ~ctx.mk_literal(r) : ctx.mk_literal(r);
};
if (m.is_true(l.rhs)) {
SASSERT(!l.sign);
return sub(l.lhs);
}
else if (m.is_false(l.rhs)) {
SASSERT(!l.sign);
return ~sub(l.lhs);
}
expr_ref fml(m.mk_eq(l.lhs, l.rhs), m);
return sub(fml);
}
struct ematch::reset_in_queue : public trail {
ematch& e;
reset_in_queue(ematch& e) :e(e) {}
void undo() override {
e.m_node_in_queue.reset();
e.m_clause_in_queue.reset();
e.m_in_queue_set = false;
}
static void insert(ematch& e) {
if (!e.m_in_queue_set) {
e.m_in_queue_set = true;
e.ctx.push(reset_in_queue(e));
}
}
};
void ematch::insert_to_propagate(unsigned node_id) {
reset_in_queue::insert(*this);
m_node_in_queue.assure_domain(node_id);
if (m_node_in_queue.contains(node_id))
return;
m_node_in_queue.insert(node_id);
for (unsigned idx : m_watch[node_id])
insert_clause_in_queue(idx);
}
void ematch::insert_clause_in_queue(unsigned idx) {
reset_in_queue::insert(*this);
m_clause_in_queue.assure_domain(idx);
if (!m_clause_in_queue.contains(idx)) {
m_clause_in_queue.insert(idx);
m_clause_queue.push_back(idx);
ctx.push(push_back_vector(m_clause_queue));
}
}
/**
* basic clausifier, assumes q has been normalized.
*/
clause* ematch::clausify(quantifier* _q) {
scoped_ptr cl = alloc(clause, m, m_clauses.size());
cl->m_literal = ctx.mk_literal(_q);
quantifier_ref q(_q, m);
q = m_qs.flatten(q);
if (is_exists(q)) {
cl->m_literal.neg();
expr_ref body(mk_not(m, q->get_expr()), m);
q = m.update_quantifier(q, forall_k, body);
}
q = nnf_skolem(q);
expr_ref_vector ors(m);
flatten_or(q->get_expr(), ors);
for (expr* arg : ors)
cl->m_lits.push_back(clausify_literal(arg));
if (q->get_num_patterns() == 0) {
expr_ref tmp(m);
m_infer_patterns(q, tmp);
q = to_quantifier(tmp);
}
cl->m_q = q;
SASSERT(is_forall(q));
euf::enode* nq = ctx.get_egraph().find(_q);
unsigned generation = nq ? nq->generation() : ctx.generation();
cl->m_stat = m_qstat_gen(_q, generation);
SASSERT(ctx.s().value(cl->m_literal) == l_true);
return cl.detach();
}
lit ematch::clausify_literal(expr* arg) {
bool sign = m.is_not(arg, arg);
expr* _l, *_r;
expr_ref l(m), r(m);
// convert into equality or equivalence
if (m.is_distinct(arg) && to_app(arg)->get_num_args() == 2) {
l = to_app(arg)->get_arg(0);
r = to_app(arg)->get_arg(1);
sign = !sign;
}
else if (!is_ground(arg) && m.is_eq(arg, _l, _r)) {
l = _l;
r = _r;
}
else {
l = arg;
r = sign ? m.mk_false() : m.mk_true();
sign = false;
}
// convert Boolean disequalities into equality
if (m.is_true(l) || m.is_false(l))
std::swap(l, r);
if (sign && m.is_false(r)) {
r = m.mk_true();
sign = false;
}
else if (sign && m.is_true(r)) {
r = m.mk_false();
sign = false;
}
return lit(l, r, sign);
}
/**
* Attach ground subterms of patterns so they appear shared.
*/
void ematch::attach_ground_pattern_terms(expr* pat) {
mam::ground_subterms(pat, m_ground);
for (expr* g : m_ground) {
euf::enode* n = ctx.get_egraph().find(g);
if (!n->is_attached_to(m_qs.get_id()))
m_qs.mk_var(n);
}
}
struct ematch::pop_clause : public trail {
ematch& em;
pop_clause(ematch& em): em(em) {}
void undo() override {
em.m_q2clauses.remove(em.m_clauses.back()->q());
dealloc(em.m_clauses.back());
em.m_clauses.pop_back();
}
};
void ematch::add(quantifier* _q) {
TRACE("q", tout << "add " << mk_pp(_q, m) << "\n");
scoped_ptr c = clausify(_q);
quantifier* q = c->q();
if (m_q2clauses.contains(q))
return;
ensure_ground_enodes(*c);
m_clauses.push_back(c.get());
m_q2clauses.insert(q, c->index());
ctx.push(pop_clause(*this));
init_watch(*c);
bool has_unary_pattern = false;
unsigned num_patterns = q->get_num_patterns();
for (unsigned i = 0; i < num_patterns && !has_unary_pattern; i++)
has_unary_pattern = (1 == to_app(q->get_pattern(i))->get_num_args());
unsigned num_eager_multi_patterns = ctx.get_config().m_qi_max_eager_multipatterns;
if (!has_unary_pattern)
num_eager_multi_patterns++;
for (unsigned i = 0, j = 0; i < num_patterns; i++) {
app * mp = to_app(q->get_pattern(i));
SASSERT(m.is_pattern(mp));
bool unary = (mp->get_num_args() == 1);
TRACE("q", tout << "adding:\n" << expr_ref(mp, m) << "\n");
if (!unary && j >= num_eager_multi_patterns) {
TRACE("q", tout << "delaying (too many multipatterns):\n" << mk_ismt2_pp(mp, m) << "\n";);
if (!m_lazy_mam)
m_lazy_mam = mam::mk(ctx, *this);
m_lazy_mam->add_pattern(q, mp);
}
else
m_mam->add_pattern(q, mp);
attach_ground_pattern_terms(mp);
if (!unary)
j++;
}
c.detach();
}
bool ematch::unit_propagate() {
// return false;
return ctx.get_config().m_ematching && propagate(false);
}
void ematch::propagate(clause& c, bool flush, bool& propagated) {
ptr_buffer to_remove;
binding* b = c.m_bindings;
if (!b)
return;
do {
if (propagate(true, b->m_nodes, b->m_max_generation, c, propagated))
to_remove.push_back(b);
else if (flush) {
instantiate(*b);
to_remove.push_back(b);
propagated = true;
}
b = b->next();
}
while (b != c.m_bindings);
for (auto* b : to_remove) {
SASSERT(binding::contains(c.m_bindings, b));
binding::remove_from(c.m_bindings, b);
binding::detach(b);
ctx.push(insert_binding(ctx, c, b));
}
}
bool ematch::propagate(bool flush) {
m_mam->propagate();
bool propagated = flush_prop_queue();
if (flush) {
for (auto* c : m_clauses)
propagate(*c, flush, propagated);
}
else {
if (m_qhead >= m_clause_queue.size())
return m_inst_queue.propagate() || propagated;
ctx.push(value_trail(m_qhead));
for (; m_qhead < m_clause_queue.size() && m.inc(); ++m_qhead) {
unsigned idx = m_clause_queue[m_qhead];
clause& c = *m_clauses[idx];
propagate(c, flush, propagated);
}
}
m_clause_in_queue.reset();
m_node_in_queue.reset();
m_in_queue_set = true;
if (m_inst_queue.propagate())
propagated = true;
return propagated;
}
bool ematch::operator()() {
TRACE("q", m_mam->display(tout););
if (propagate(false))
return true;
if (m_lazy_mam)
m_lazy_mam->propagate();
if (propagate(false))
return true;
for (unsigned i = 0; i < m_clauses.size(); ++i)
if (m_clauses[i]->m_bindings)
insert_clause_in_queue(i);
if (propagate(true))
return true;
if (m_inst_queue.lazy_propagate())
return true;
for (unsigned i = 0; i < m_clauses.size(); ++i)
if (m_clauses[i]->m_bindings) {
IF_VERBOSE(0, verbose_stream() << "missed propagation " << i << "\n");
TRACE("q", display(tout << "missed propagation\n"));
break;
}
TRACE("q", tout << "no more propagation\n";);
return false;
}
void ematch::collect_statistics(statistics& st) const {
m_inst_queue.collect_statistics(st);
st.update("q redundant", m_stats.m_num_redundant);
st.update("q unit propagations", m_stats.m_num_propagations);
st.update("q conflicts", m_stats.m_num_conflicts);
st.update("q delayed bindings", m_stats.m_num_delayed_bindings);
}
std::ostream& ematch::display(std::ostream& out) const {
for (auto const& c : m_clauses)
c->display(ctx, out);
return out;
}
}