z3-z3-4.13.0.src.smt.seq_axioms.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
seq_axioms.h
Abstract:
Axiomatize string operations that can be reduced to
more basic operations.
Author:
Nikolaj Bjorner (nbjorner) 2020-4-16
Revision History:
--*/
#pragma once
#include "ast/seq_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/rewriter/seq_skolem.h"
#include "ast/rewriter/seq_axioms.h"
#include "smt/smt_theory.h"
namespace smt {
class seq_axioms {
theory& th;
th_rewriter& m_rewrite;
ast_manager& m;
arith_util a;
seq_util seq;
seq::skolem m_sk;
seq::axioms m_ax;
bool m_digits_initialized;
literal mk_eq_empty(expr* e, bool phase = true) { return mk_eq_empty2(e, phase); }
context& ctx() { return th.get_context(); }
literal mk_eq(expr* a, expr* b);
literal mk_literal(expr* e);
literal mk_seq_eq(expr* a, expr* b) { SASSERT(seq.is_seq(a) && seq.is_seq(b)); return mk_literal(m_sk.mk_eq(a, b)); }
expr_ref mk_len(expr* s);
expr_ref mk_sub(expr* x, expr* y);
expr_ref mk_concat(expr* e1, expr* e2, expr* e3) { return expr_ref(seq.str.mk_concat(e1, e2, e3), m); }
expr_ref mk_concat(expr* e1, expr* e2) { return expr_ref(seq.str.mk_concat(e1, e2), m); }
expr_ref mk_nth(expr* e, unsigned i) { return expr_ref(seq.str.mk_nth_i(e, a.mk_int(i)), m); }
literal mk_ge_e(expr* x, expr* y) { return mk_literal(a.mk_ge(x, y)); }
literal mk_le_e(expr* x, expr* y) { return mk_literal(a.mk_le(x, y)); }
void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal,
literal l4 = null_literal, literal l5 = null_literal) { add_axiom5(l1, l2, l3, l4, l5); }
void ensure_digit_axiom();
void add_clause(expr_ref_vector const& lits);
void set_phase(expr* e);
public:
seq_axioms(theory& th, th_rewriter& r);
// we rely on client to supply the following functions:
std::function add_axiom5;
std::function mk_eq_empty2;
void add_suffix_axiom(expr* n) { m_ax.suffix_axiom(n); }
void add_prefix_axiom(expr* n) { m_ax.prefix_axiom(n); }
void add_extract_axiom(expr* n) { m_ax.extract_axiom(n); }
void add_indexof_axiom(expr* n) { m_ax.indexof_axiom(n); }
void add_last_indexof_axiom(expr* n) { m_ax.last_indexof_axiom(n); }
void add_replace_axiom(expr* n) { m_ax.replace_axiom(n); }
void add_replace_all_axiom(expr* n) { m_ax.replace_all_axiom(n); }
void add_at_axiom(expr* n) { m_ax.at_axiom(n); }
void add_nth_axiom(expr* n) { m_ax.nth_axiom(n); }
void add_itos_axiom(expr* n) { m_ax.itos_axiom(n); }
void add_stoi_axiom(expr* n) { m_ax.stoi_axiom(n); }
void add_stoi_axiom(expr* e, unsigned k) { m_ax.stoi_axiom(e, k); }
void add_itos_axiom(expr* s, unsigned k) { m_ax.itos_axiom(s, k); }
void add_ubv2s_axiom(expr* b, unsigned k) { m_ax.ubv2s_axiom(b, k); }
void add_ubv2s_len_axiom(expr* b, unsigned k) { m_ax.ubv2s_len_axiom(b, k); }
void add_ubv2s_len_axiom(expr* b) { m_ax.ubv2s_len_axiom(b); }
void add_ubv2ch_axioms(sort* s) { m_ax.ubv2ch_axiom(s); }
void add_lt_axiom(expr* n) { m_ax.lt_axiom(n); }
void add_le_axiom(expr* n) { m_ax.le_axiom(n); }
void add_is_digit_axiom(expr* n) { m_ax.is_digit_axiom(n); }
void add_str_to_code_axiom(expr* n) { m_ax.str_to_code_axiom(n); }
void add_str_from_code_axiom(expr* n) { m_ax.str_from_code_axiom(n); }
void add_unit_axiom(expr* n) { m_ax.unit_axiom(n); }
void add_length_axiom(expr* n) { m_ax.length_axiom(n); }
void unroll_not_contains(expr* n) { m_ax.unroll_not_contains(n); }
literal is_digit(expr* ch) { return mk_literal(m_ax.is_digit(ch)); }
expr_ref add_length_limit(expr* s, unsigned k) { return m_ax.length_limit(s, k); }
literal mk_ge(expr* e, int k) { return mk_ge_e(e, a.mk_int(k)); }
literal mk_le(expr* e, int k) { return mk_le_e(e, a.mk_int(k)); }
literal mk_ge(expr* e, rational const& k) { return mk_ge_e(e, a.mk_int(k)); }
literal mk_le(expr* e, rational const& k) { return mk_le_e(e, a.mk_int(k)); }
seq::axioms& ax() { return m_ax; }
};
};