z3-z3-4.13.0.src.smt.smt_context.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
smt_context.h
Abstract:
Logical context
Author:
Leonardo de Moura (leonardo) 2008-02-18.
Revision History:
--*/
#pragma once
#include "ast/quantifier_stat.h"
#include "smt/smt_clause.h"
#include "smt/smt_setup.h"
#include "smt/smt_enode.h"
#include "smt/smt_cg_table.h"
#include "smt/smt_b_justification.h"
#include "smt/smt_eq_justification.h"
#include "smt/smt_justification.h"
#include "smt/smt_bool_var_data.h"
#include "smt/smt_clause_proof.h"
#include "smt/smt_theory.h"
#include "smt/smt_quantifier.h"
#include "smt/smt_statistics.h"
#include "smt/smt_conflict_resolution.h"
#include "smt/smt_relevancy.h"
#include "smt/smt_case_split_queue.h"
#include "smt/smt_almost_cg_table.h"
#include "smt/smt_failure.h"
#include "smt/smt_types.h"
#include "smt/dyn_ack.h"
#include "ast/ast_smt_pp.h"
#include "smt/watch_list.h"
#include "util/trail.h"
#include "util/ref.h"
#include "util/timer.h"
#include "util/statistics.h"
#include "smt/fingerprints.h"
#include "smt/proto_model/proto_model.h"
#include "smt/theory_user_propagator.h"
#include "model/model.h"
#include "solver/progress_callback.h"
#include "solver/assertions/asserted_formulas.h"
#include
// there is a significant space overhead with allocating 1000+ contexts in
// the case that each context only references a few expressions.
// Using a map instead of a vector for the literals can compress space
// consumption.
#define USE_BOOL_VAR_VECTOR 1
namespace smt {
class model_generator;
class context;
struct cancel_exception {};
struct enode_pp {
context const& ctx;
enode* n;
enode_pp(enode* n, context const& ctx): ctx(ctx), n(n) {}
};
class context {
friend class model_generator;
friend class lookahead;
friend class parallel;
public:
statistics m_stats;
std::ostream& display_last_failure(std::ostream& out) const;
std::string last_failure_as_string() const;
void set_reason_unknown(char const* msg) { m_unknown = msg; }
void set_progress_callback(progress_callback *callback);
protected:
ast_manager & m;
smt_params & m_fparams;
params_ref m_params;
::statistics m_aux_stats;
setup m_setup;
unsigned m_relevancy_lvl;
timer m_timer;
asserted_formulas m_asserted_formulas;
th_rewriter m_rewriter;
scoped_ptr m_qmanager;
scoped_ptr m_model_generator;
scoped_ptr m_relevancy_propagator;
theory_user_propagator* m_user_propagator;
random_gen m_random;
bool m_flushing; // (debug support) true when flushing
mutable unsigned m_lemma_id;
progress_callback * m_progress_callback;
unsigned m_next_progress_sample;
clause_proof m_clause_proof;
region m_region;
fingerprint_set m_fingerprints;
expr_ref_vector m_b_internalized_stack; // stack of the boolean expressions already internalized.
// Remark: boolean expressions can also be internalized as
// enodes. Examples: boolean expression nested in an
// uninterpreted function.
expr_ref_vector m_e_internalized_stack; // stack of the expressions already internalized as enodes.
quantifier_ref_vector m_l_internalized_stack;
ptr_vector m_justifications;
unsigned m_final_check_idx = 0; // circular counter used for implementing fairness
bool m_is_auxiliary = false; // used to prevent unwanted information from being logged.
class parallel* m_par = nullptr;
unsigned m_par_index = 0;
bool m_internalizing_assertions = false;
// -----------------------------------
//
// Equality & Uninterpreted functions
//
// -----------------------------------
enode * m_true_enode;
enode * m_false_enode;
app2enode_t m_app2enode; // app -> enode
ptr_vector m_enodes;
plugin_manager m_theories; // mapping from theory_id -> theory
ptr_vector m_theory_set; // set of theories for fast traversal
vector m_decl2enodes; // decl -> enode (for decls with arity > 0)
enode_vector m_empty_vector;
cg_table m_cg_table;
struct new_eq {
enode * m_lhs;
enode * m_rhs;
eq_justification m_justification;
new_eq(enode * lhs, enode * rhs, eq_justification const & js):
m_lhs(lhs), m_rhs(rhs), m_justification(js) {}
};
svector m_eq_propagation_queue;
struct new_th_eq {
theory_id m_th_id;
theory_var m_lhs;
theory_var m_rhs;
new_th_eq(theory_id id, theory_var l, theory_var r):m_th_id(id), m_lhs(l), m_rhs(r) {}
};
svector m_th_eq_propagation_queue;
svector m_th_diseq_propagation_queue;
#ifdef Z3DEBUG
svector m_propagated_th_eqs;
svector m_propagated_th_diseqs;
svector m_diseq_vector;
#endif
enode * m_is_diseq_tmp { nullptr }; // auxiliary enode used to find congruent equality atoms.
tmp_enode m_tmp_enode;
ptr_vector m_almost_cg_tables; // temporary field for is_ext_diseq
// -----------------------------------
//
// Boolean engine
//
// -----------------------------------
#if USE_BOOL_VAR_VECTOR
svector m_expr2bool_var; // expr id -> bool_var
#else
u_map m_expr2bool_var;
#endif
ptr_vector m_bool_var2expr; // bool_var -> expr
signed_char_vector m_assignment; //!< mapping literal id -> assignment lbool
vector m_watches; //!< per literal
unsigned_vector m_lit_occs; //!< occurrence count of literals
svector m_bdata; //!< mapping bool_var -> data
svector m_activity;
clause_vector m_aux_clauses;
clause_vector m_lemmas;
vector m_clauses_to_reinit;
expr_ref_vector m_units_to_reassert;
svector m_units_to_reassert_sign;
literal_vector m_assigned_literals;
typedef std::pair tmp_clause;
vector m_tmp_clauses;
unsigned m_qhead { 0 };
unsigned m_simp_qhead { 0 };
int m_simp_counter { 0 }; //!< can become negative
scoped_ptr m_case_split_queue;
double m_bvar_inc { 1.0 };
bool m_phase_cache_on { true };
unsigned m_phase_counter { 0 }; //!< auxiliary variable used to decide when to turn on/off phase caching
bool m_phase_default { false }; //!< default phase when using phase caching
// A conflict is usually a single justification. That is, a justification
// for false. If m_not_l is not null_literal, then m_conflict is a
// justification for l, and the conflict is union of m_not_l and m_conflict;
// m_empty_clause is set to ensure that an empty clause generated in deep scope
// levels survives to the base level.
b_justification m_conflict;
literal m_not_l;
scoped_ptr m_conflict_resolution;
proof_ref m_unsat_proof;
literal_vector m_atom_propagation_queue;
obj_map m_cached_generation;
obj_hashtable m_cache_generation_visited;
dyn_ack_manager m_dyn_ack_manager;
// -----------------------------------
//
// Model generation
//
// -----------------------------------
proto_model_ref m_proto_model;
model_ref m_model;
const char * m_unknown;
void mk_proto_model();
void reset_model() { m_model = nullptr; m_proto_model = nullptr; }
// -----------------------------------
//
// Unsat core extraction
//
// -----------------------------------
typedef u_map literal2assumption;
literal_vector m_assumptions;
literal2assumption m_literal2assumption; // maps an expression associated with a literal to the original assumption
expr_ref_vector m_unsat_core;
unsigned m_last_position_log { 0 };
svector m_last_positions;
// -----------------------------------
//
// Theory case split
//
// -----------------------------------
uint_set m_all_th_case_split_literals;
vector m_th_case_split_sets;
u_map< vector > m_literal2casesplitsets; // returns the case split literal sets that a literal participates in
// -----------------------------------
//
// Accessors
//
// -----------------------------------
public:
ast_manager & get_manager() const {
return m;
}
th_rewriter & get_rewriter() {
return m_rewriter;
}
smt_params & get_fparams() {
return m_fparams;
}
params_ref const & get_params() {
return m_params;
}
void updt_params(params_ref const& p);
bool get_cancel_flag();
region & get_region() {
return m_region;
}
bool relevancy() const {
return relevancy_lvl() > 0;
}
unsigned relevancy_lvl() const;
enode * get_enode(expr const * n) const {
SASSERT(e_internalized(n));
return m_app2enode[n->get_id()];
}
void get_specrels(func_decl_set& rels) const;
/**
\brief Similar to get_enode, but returns 0 if n is to e_internalized.
*/
enode * find_enode(expr const * n) const {
return m_app2enode.get(n->get_id(), 0);
}
void reset_bool_vars() {
m_expr2bool_var.reset();
}
bool_var get_bool_var(expr const * n) const {
return m_expr2bool_var[n->get_id()];
}
bool_var get_bool_var(enode const * n) const {
return get_bool_var(n->get_expr());
}
bool_var get_bool_var_of_id(unsigned id) const {
return m_expr2bool_var[id];
}
bool_var get_bool_var_of_id_option(unsigned id) const {
return m_expr2bool_var.get(id, null_bool_var);
}
#if USE_BOOL_VAR_VECTOR
void set_bool_var(unsigned id, bool_var v) {
m_expr2bool_var.setx(id, v, null_bool_var);
}
#else
void set_bool_var(unsigned id, bool_var v) {
if (v == null_bool_var) {
m_expr2bool_var.erase(id);
}
else {
m_expr2bool_var.insert(id, v);
}
}
#endif
clause_vector const& get_lemmas() const { return m_lemmas; }
literal get_literal(expr * n) const;
bool has_enode(bool_var v) const {
return m_bdata[v].is_enode();
}
enode * bool_var2enode(bool_var v) const {
SASSERT(m_bdata[v].is_enode());
return m_app2enode[m_bool_var2expr[v]->get_id()];
}
bool_var enode2bool_var(enode const * n) const {
SASSERT(n->is_bool());
SASSERT(n != m_false_enode);
return get_bool_var_of_id(n->get_owner_id());
}
literal enode2literal(enode const * n) const {
SASSERT(n->is_bool());
return n == m_false_enode ? false_literal : literal(enode2bool_var(n));
}
unsigned get_num_bool_vars() const {
return m_b_internalized_stack.size();
}
bool_var_data & get_bdata(bool_var v) {
return m_bdata[v];
}
bool_var_data const & get_bdata(bool_var v) const {
return m_bdata[v];
}
lbool get_lit_assignment(unsigned lit_idx) const {
return static_cast(m_assignment[lit_idx]);
}
lbool get_assignment(literal l) const {
return get_lit_assignment(l.index());
}
lbool get_assignment(bool_var v) const {
return get_assignment(literal(v));
}
literal_vector const & assigned_literals() const {
return m_assigned_literals;
}
watch_list const& get_watch(literal l) const {
return m_watches[l.index()];
}
lbool get_assignment(expr * n) const;
// Similar to get_assignment, but returns l_undef if n is not internalized.
lbool find_assignment(expr * n) const;
lbool get_assignment(enode * n) const;
void get_assignments(expr_ref_vector& assignments);
b_justification get_justification(bool_var v) const {
return get_bdata(v).justification();
}
void set_justification(bool_var v, bool_var_data& d, b_justification const& j);
bool has_th_justification(bool_var v, theory_id th_id) const {
b_justification js = get_justification(v);
return js.get_kind() == b_justification::JUSTIFICATION && js.get_justification()->get_from_theory() == th_id;
}
void set_random_seed(unsigned s) { m_random.set_seed(s); }
int get_random_value() { return m_random(); }
bool is_searching() const { return m_searching; }
svector const & get_activity_vector() const { return m_activity; }
double get_activity(bool_var v) const { return m_activity[v]; }
void set_activity(bool_var v, double act) { m_activity[v] = act; }
void activity_changed(bool_var v, bool increased) {
if (increased) {
m_case_split_queue->activity_increased_eh(v);
}
else {
m_case_split_queue->activity_decreased_eh(v);
}
}
bool is_assumption(bool_var v) const {
return get_bdata(v).m_assumption;
}
bool is_assumption(literal l) const {
return is_assumption(l.var());
}
bool is_marked(bool_var v) const {
return get_bdata(v).m_mark;
}
void set_mark(bool_var v) {
SASSERT(!is_marked(v));
get_bdata(v).m_mark = true;
}
void unset_mark(bool_var v) {
SASSERT(is_marked(v));
get_bdata(v).m_mark = false;
}
/**
\brief Return the scope level when v was assigned.
*/
unsigned get_assign_level(bool_var v) const {
return get_bdata(v).m_scope_lvl;
}
unsigned get_assign_level(literal l) const {
return get_assign_level(l.var());
}
/**
\brief Return the scope level when v was internalized.
*/
unsigned get_intern_level(bool_var v) const {
return get_bdata(v).get_intern_level();
}
theory * get_theory(theory_id th_id) const {
return m_theories.get_plugin(th_id);
}
ptr_vector const& theories() const { return m_theories.plugins(); }
ptr_vector::const_iterator begin_theories() const {
return m_theories.begin();
}
ptr_vector::const_iterator end_theories() const {
return m_theories.end();
}
unsigned get_scope_level() const {
return m_scope_lvl;
}
unsigned get_base_level() const {
return m_base_lvl;
}
bool at_base_level() const {
return m_scope_lvl == m_base_lvl;
}
unsigned get_search_level() const {
return m_search_lvl;
}
bool at_search_level() const {
return m_scope_lvl == m_search_lvl;
}
bool tracking_assumptions() const {
return !m_assumptions.empty() && m_search_lvl > m_base_lvl;
}
expr * bool_var2expr(bool_var v) const {
return m_bool_var2expr[v];
}
void literal2expr(literal l, expr_ref & result) const {
if (l == true_literal)
result = m.mk_true();
else if (l == false_literal)
result = m.mk_false();
else if (l.sign())
result = m.mk_not(bool_var2expr(l.var()));
else
result = bool_var2expr(l.var());
}
expr_ref literal2expr(literal l) const {
expr_ref result(m);
literal2expr(l, result);
return result;
}
bool is_true(enode const * n) const {
return n == m_true_enode;
}
bool is_false(enode const * n) const {
return n == m_false_enode;
}
unsigned get_num_enodes_of(func_decl const * decl) const {
unsigned id = decl->get_small_id();
return id < m_decl2enodes.size() ? m_decl2enodes[id].size() : 0;
}
enode_vector const& enodes_of(func_decl const * d) const {
unsigned id = d->get_small_id();
return id < m_decl2enodes.size() ? m_decl2enodes[id] : m_empty_vector;
}
enode_vector::const_iterator begin_enodes_of(func_decl const * decl) const {
unsigned id = decl->get_small_id();
return id < m_decl2enodes.size() ? m_decl2enodes[id].begin() : nullptr;
}
enode_vector::const_iterator end_enodes_of(func_decl const * decl) const {
unsigned id = decl->get_small_id();
return id < m_decl2enodes.size() ? m_decl2enodes[id].end() : nullptr;
}
ptr_vector const& enodes() const { return m_enodes; }
ptr_vector::const_iterator begin_enodes() const {
return m_enodes.begin();
}
ptr_vector::const_iterator end_enodes() const {
return m_enodes.end();
}
unsigned get_generation(quantifier * q) const {
return m_qmanager->get_generation(q);
}
/**
\brief Return true if the logical context internalized universal quantifiers.
*/
bool internalized_quantifiers() const {
return !m_qmanager->empty();
}
/**
\brief Return true if the logical context internalized or will internalize universal quantifiers.
*/
bool has_quantifiers() const {
return m_asserted_formulas.has_quantifiers();
}
fingerprint * add_fingerprint(void * data, unsigned data_hash, unsigned num_args, enode * const * args, expr* def = nullptr) {
return m_fingerprints.insert(data, data_hash, num_args, args, def);
}
theory_id get_var_theory(bool_var v) const {
return get_bdata(v).get_theory();
}
/**
* flag to toggle quantifier tracing.
*/
bool m_coming_from_quant { false };
friend class set_var_theory_trail;
void set_var_theory(bool_var v, theory_id tid);
// -----------------------------------
//
// Backtracking support
//
// -----------------------------------
protected:
typedef ptr_vector trail_stack;
trail_stack m_trail_stack;
#ifdef Z3DEBUG
bool m_trail_enabled { true };
#endif
public:
template
void push_trail(const TrailObject & obj) {
SASSERT(m_trail_enabled);
m_trail_stack.push_back(new (m_region) TrailObject(obj));
}
void push_trail_ptr(trail * ptr) {
m_trail_stack.push_back(ptr);
}
protected:
unsigned m_scope_lvl { 0 };
unsigned m_base_lvl { 0 };
unsigned m_search_lvl { 0 }; // It is greater than m_base_lvl when assumptions are used. Otherwise, it is equals to m_base_lvl
struct scope {
unsigned m_assigned_literals_lim;
unsigned m_trail_stack_lim;
unsigned m_aux_clauses_lim;
unsigned m_justifications_lim;
unsigned m_units_to_reassert_lim;
};
struct base_scope {
unsigned m_lemmas_lim;
unsigned m_simp_qhead_lim;
unsigned m_inconsistent;
};
svector m_scopes;
svector m_base_scopes;
void push_scope();
unsigned pop_scope_core(unsigned num_scopes);
void pop_scope(unsigned num_scopes);
void undo_trail_stack(unsigned old_size);
void unassign_vars(unsigned old_lim);
void remove_watch_literal(clause * cls, unsigned idx);
void remove_cls_occs(clause * cls);
void del_clause(bool log, clause * cls);
void del_clauses(clause_vector & v, unsigned old_size);
void del_justifications(ptr_vector & justifications, unsigned old_lim);
bool is_unit_clause(clause const * c) const;
bool is_empty_clause(clause const * c) const;
void cache_generation(unsigned new_scope_lvl);
void cache_generation(clause const * cls, unsigned new_scope_lvl);
void cache_generation(unsigned num_lits, literal const * lits, unsigned new_scope_lvl);
void cache_generation(expr * n, unsigned new_scope_lvl);
void reset_cache_generation();
void reinit_clauses(unsigned num_scopes, unsigned num_bool_vars);
void reassert_units(unsigned units_to_reassert_lim);
public:
// \brief exposed for PB solver to participate in GC
void remove_watch(bool_var v);
// -----------------------------------
//
// Internalization
//
// -----------------------------------
public:
bool b_internalized(expr const * n) const {
return get_bool_var_of_id_option(n->get_id()) != null_bool_var;
}
bool lit_internalized(expr const * n) const {
return m.is_false(n) || (m.is_not(n) ? b_internalized(to_app(n)->get_arg(0)) : b_internalized(n));
}
bool e_internalized(expr const * n) const {
return m_app2enode.get(n->get_id(), 0) != 0;
}
unsigned get_num_b_internalized() const {
return m_b_internalized_stack.size();
}
expr * get_b_internalized(unsigned idx) const {
return m_b_internalized_stack.get(idx);
}
unsigned get_num_e_internalized() const {
return m_e_internalized_stack.size();
}
expr * get_e_internalized(unsigned idx) const {
return m_e_internalized_stack.get(idx);
}
/**
\brief Return the position (in the assignment stack) of the decision literal at the given scope level.
*/
unsigned get_decision_literal_pos(unsigned scope_lvl) const {
SASSERT(scope_lvl > m_base_lvl);
return m_scopes[scope_lvl - 1].m_assigned_literals_lim;
}
protected:
unsigned m_generation { 0 }; //!< temporary variable used during internalization
public:
bool binary_clause_opt_enabled() const {
return !m.proofs_enabled() && m_fparams.m_binary_clause_opt;
}
protected:
bool_var_data & get_bdata(expr const * n) {
return get_bdata(get_bool_var(n));
}
bool_var_data const & get_bdata(expr const * n) const {
return get_bdata(get_bool_var(n));
}
typedef std::pair expr_bool_pair;
void ts_visit_child(expr * n, bool gate_ctx, svector & todo, bool & visited);
bool ts_visit_children(expr * n, bool gate_ctx, svector & todo);
svector ts_todo;
char_vector tcolors;
char_vector fcolors;
bool should_internalize_rec(expr* e) const;
void top_sort_expr(expr* const* exprs, unsigned num_exprs, svector & sorted_exprs);
void internalize_rec(expr * n, bool gate_ctx);
void internalize_deep(expr * n);
void internalize_deep(expr* const* n, unsigned num_exprs);
void assert_default(expr * n, proof * pr);
void assert_distinct(app * n, proof * pr);
void internalize_formula(expr * n, bool gate_ctx);
void internalize_eq(app * n, bool gate_ctx);
void internalize_distinct(app * n, bool gate_ctx);
bool internalize_theory_atom(app * n, bool gate_ctx);
void internalize_quantifier(quantifier * q, bool gate_ctx);
obj_map m_lambdas;
bool has_lambda();
void internalize_lambda(quantifier * q);
void internalize_formula_core(app * n, bool gate_ctx);
void set_merge_tf(enode * n, bool_var v, bool is_new_var);
friend class set_enode_flag_trail;
public:
void set_enode_flag(bool_var v, bool is_new_var);
protected:
void internalize_term(app * n);
void internalize_ite_term(app * n);
bool internalize_theory_term(app * n);
void internalize_uninterpreted(app * n);
friend class mk_bool_var_trail;
class mk_bool_var_trail : public trail {
context& ctx;
public:
mk_bool_var_trail(context& ctx) :ctx(ctx) {}
void undo() override { ctx.undo_mk_bool_var(); }
};
mk_bool_var_trail m_mk_bool_var_trail;
void undo_mk_bool_var();
friend class mk_enode_trail;
class mk_enode_trail : public trail {
context& ctx;
public:
mk_enode_trail(context& ctx) :ctx(ctx) {}
void undo() override { ctx.undo_mk_enode(); }
};
mk_enode_trail m_mk_enode_trail;
void undo_mk_enode();
friend class mk_lambda_trail;
class mk_lambda_trail : public trail {
context& ctx;
public:
mk_lambda_trail(context& ctx) :ctx(ctx) {}
void undo() override { ctx.undo_mk_lambda(); }
};
mk_lambda_trail m_mk_lambda_trail;
void undo_mk_lambda();
void apply_sort_cnstr(app * term, enode * e);
bool simplify_aux_clause_literals(unsigned & num_lits, literal * lits, literal_buffer & simp_lits);
bool simplify_aux_lemma_literals(unsigned & num_lits, literal * lits);
void mark_for_reinit(clause * cls, unsigned scope_lvl, bool reinternalize_atoms);
unsigned get_max_iscope_lvl(unsigned num_lits, literal const * lits) const;
bool use_binary_clause_opt(literal l1, literal l2, bool lemma) const;
int select_learned_watch_lit(clause const * cls) const;
int select_watch_lit(clause const * cls, int starting_at) const;
void add_watch_literal(clause * cls, unsigned idx);
proof * mk_clause_def_axiom(unsigned num_lits, literal * lits, expr * root_gate);
public:
void mk_gate_clause(unsigned num_lits, literal * lits);
void mk_gate_clause(literal l1, literal l2);
void mk_gate_clause(literal l1, literal l2, literal l3);
void mk_gate_clause(literal l1, literal l2, literal l3, literal l4);
protected:
void mk_root_clause(unsigned num_lits, literal * lits, proof * pr);
void mk_root_clause(literal l1, literal l2, proof * pr);
void mk_root_clause(literal l1, literal l2, literal l3, proof * pr);
void add_and_rel_watches(app * n);
void add_or_rel_watches(app * n);
void add_ite_rel_watches(app * n);
void mk_not_cnstr(app * n);
void mk_and_cnstr(app * n);
void mk_or_cnstr(app * n);
void mk_iff_cnstr(app * n, bool sign);
void mk_ite_cnstr(app * n);
bool track_occs() const { return m_fparams.m_phase_selection == PS_OCCURRENCE; }
void dec_ref(literal l);
void inc_ref(literal l);
void remove_lit_occs(clause const& cls, unsigned num_bool_vars);
void add_lit_occs(clause const& cls);
ast_pp_util m_lemma_visitor;
void dump_lemma(unsigned n, literal const* lits);
void dump_axiom(unsigned n, literal const* lits);
public:
void ensure_internalized(expr* e);
void internalize(expr * n, bool gate_ctx);
void internalize(expr* const* exprs, unsigned num_exprs, bool gate_ctx);
void internalize(expr * n, bool gate_ctx, unsigned generation);
clause * mk_clause(unsigned num_lits, literal * lits, justification * j, clause_kind k = CLS_AUX, clause_del_eh * del_eh = nullptr);
void mk_clause(literal l1, literal l2, justification * j);
void mk_clause(literal l1, literal l2, literal l3, justification * j);
void mk_th_clause(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params, parameter * params, clause_kind k);
void mk_th_axiom(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_clause(tid, num_lits, lits, num_params, params, CLS_TH_AXIOM);
}
void mk_th_axiom(theory_id tid, literal l1, literal l2, unsigned num_params = 0, parameter * params = nullptr);
void mk_th_axiom(theory_id tid, literal l1, literal l2, literal l3, unsigned num_params = 0, parameter * params = nullptr);
void mk_th_axiom(theory_id tid, literal_vector const& ls, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_axiom(tid, ls.size(), ls.data(), num_params, params);
}
void mk_th_lemma(theory_id tid, literal l1, literal l2, unsigned num_params = 0, parameter * params = nullptr) {
literal ls[2] = { l1, l2 };
mk_th_lemma(tid, 2, ls, num_params, params);
}
void mk_th_lemma(theory_id tid, literal l1, literal l2, literal l3, unsigned num_params = 0, parameter * params = nullptr) {
literal ls[3] = { l1, l2, l3 };
mk_th_lemma(tid, 3, ls, num_params, params);
}
void mk_th_lemma(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_clause(tid, num_lits, lits, num_params, params, CLS_TH_LEMMA);
}
void mk_th_lemma(theory_id tid, literal_vector const& ls, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_lemma(tid, ls.size(), ls.data(), num_params, params);
}
/*
* Provide a hint to the core solver that the specified literals form a "theory case split".
* The core solver will enforce the condition that exactly one of these literals can be
* assigned 'true' at any time.
* We assume that the theory solver has already asserted the disjunction of these literals
* or some other axiom that means at least one of them must be assigned 'true'.
*/
void mk_th_case_split(unsigned num_lits, literal * lits);
/*
* Provide a hint to the branching heuristic about the priority of a "theory-aware literal".
* Literals marked in this way will always be branched on before unmarked literals,
* starting with the literal having the highest priority.
*/
void add_theory_aware_branching_info(bool_var v, double priority, lbool phase);
public:
// helper function for trail
void undo_th_case_split(literal l);
bool propagate_th_case_split(unsigned qhead);
bool_var mk_bool_var(expr * n);
enode * mk_enode(app * n, bool suppress_args, bool merge_tf, bool cgc_enabled);
void attach_th_var(enode * n, theory * th, theory_var v);
template
justification * mk_justification(Justification const & j) {
justification * js = new (m_region) Justification(j);
SASSERT(js->in_region());
if (js->has_del_eh())
m_justifications.push_back(js);
return js;
}
// -----------------------------------
//
// Engine
//
// -----------------------------------
protected:
lbool m_last_search_result { l_undef };
failure m_last_search_failure { UNKNOWN };
ptr_vector m_incomplete_theories; //!< theories that failed to produce a model
bool m_searching { false };
unsigned m_num_conflicts;
unsigned m_num_conflicts_since_restart;
unsigned m_num_conflicts_since_lemma_gc;
unsigned m_num_restarts;
unsigned m_num_simplifications;
unsigned m_restart_threshold;
unsigned m_restart_outer_threshold;
unsigned m_luby_idx;
double m_agility;
unsigned m_lemma_gc_threshold;
void assign_core(literal l, b_justification j, bool decision = false);
void trace_assign(literal l, b_justification j, bool decision) const;
public:
void assign(literal l, const b_justification & j, bool decision = false) {
SASSERT(l != false_literal);
SASSERT(l != null_literal);
switch (get_assignment(l)) {
case l_false:
set_conflict(j, ~l);
break;
case l_undef:
assign_core(l, j, decision);
break;
case l_true:
return;
}
}
void assign(literal l, justification * j, bool decision = false) {
assign(l, j ? b_justification(j) : b_justification::mk_axiom(), decision);
}
friend class set_true_first_trail;
void set_true_first_flag(bool_var v);
bool try_true_first(bool_var v) const { return get_bdata(v).try_true_first(); }
bool assume_eq(enode * lhs, enode * rhs);
bool is_shared(enode * n) const;
bool is_beta_redex(enode* p, enode* n) const;
void assign_eq(enode * lhs, enode * rhs, eq_justification const & js) {
push_eq(lhs, rhs, js);
}
/**
\brief Force the given phase next time we case split v.
This method has no effect if phase caching is disabled.
*/
void force_phase(bool_var v, bool phase) {
bool_var_data & d = get_bdata(v);
d.m_phase_available = true;
d.m_phase = phase;
}
void force_phase(literal l) {
force_phase(l.var(), !l.sign());
}
bool contains_instance(quantifier * q, unsigned num_bindings, enode * const * bindings);
bool add_instance(quantifier * q, app * pat, unsigned num_bindings, enode * const * bindings, expr* def, unsigned max_generation,
unsigned min_top_generation, unsigned max_top_generation, vector> & used_enodes /*gives the equalities used for the pattern match, see mam.cpp for more info*/);
void set_global_generation(unsigned generation) { m_generation = generation; }
#ifdef Z3DEBUG
bool slow_contains_instance(quantifier const * q, unsigned num_bindings, enode * const * bindings) const {
return m_fingerprints.slow_contains(q, q->get_id(), num_bindings, bindings);
}
#endif
void add_eq(enode * n1, enode * n2, eq_justification js);
protected:
void push_new_th_eq(theory_id th, theory_var lhs, theory_var rhs);
void push_new_th_diseq(theory_id th, theory_var lhs, theory_var rhs);
friend class add_eq_trail;
void remove_parents_from_cg_table(enode * r1);
void reinsert_parents_into_cg_table(enode * r1, enode * r2, enode * n1, enode * n2, eq_justification js);
void invert_trans(enode * n);
theory_var get_closest_var(enode * n, theory_id th_id);
void merge_theory_vars(enode * r2, enode * r1, eq_justification js);
void propagate_bool_enode_assignment(enode * r1, enode * r2, enode * n1, enode * n2);
void propagate_bool_enode_assignment_core(enode * source, enode * target);
void undo_add_eq(enode * r1, enode * n1, unsigned r2_num_parents);
void restore_theory_vars(enode * r2, enode * r1);
void push_eq(enode * lhs, enode * rhs, eq_justification const & js) {
if (lhs->get_root() != rhs->get_root()) {
SASSERT(lhs->get_expr()->get_sort() == rhs->get_expr()->get_sort());
m_eq_propagation_queue.push_back(new_eq(lhs, rhs, js));
}
}
void push_new_congruence(enode * n1, enode * n2, bool used_commutativity) {
SASSERT(n1->m_cg == n2);
// if (is_relevant(n1)) mark_as_relevant(n2);
push_eq(n1, n2, eq_justification::mk_cg(used_commutativity));
}
bool add_diseq(enode * n1, enode * n2);
void assign_quantifier(quantifier * q);
void set_conflict(const b_justification & js, literal not_l);
void set_conflict(const b_justification & js) {
set_conflict(js, null_literal);
}
public:
void set_conflict(justification * js) {
SASSERT(js);
set_conflict(b_justification(js));
}
bool inconsistent() const {
return m_conflict != null_b_justification ||
m_asserted_formulas.inconsistent();
}
bool has_case_splits();
unsigned get_num_conflicts() const {
return m_num_conflicts;
}
static bool is_eq(enode const * n1, enode const * n2) { return n1->get_root() == n2->get_root(); }
bool is_diseq(enode * n1, enode * n2) const;
bool is_diseq_slow(enode * n1, enode * n2) const;
bool is_ext_diseq(enode * n1, enode * n2, unsigned depth);
enode * get_enode_eq_to(func_decl * f, unsigned num_args, enode * const * args);
bool guess(bool_var var, lbool phase);
protected:
bool decide();
void update_phase_cache_counter();
#define ACTIVITY_LIMIT 1e100
#define INV_ACTIVITY_LIMIT 1e-100
void rescale_bool_var_activity();
public:
void inc_bvar_activity(bool_var v) {
double & act = m_activity[v];
act += m_bvar_inc;
if (act > ACTIVITY_LIMIT)
rescale_bool_var_activity();
m_case_split_queue->activity_increased_eh(v);
TRACE("case_split", tout << "v" << v << " " << m_bvar_inc << " -> " << act << "\n";);
}
protected:
void decay_bvar_activity() {
m_bvar_inc *= m_fparams.m_inv_decay;
}
bool simplify_clause(clause& cls);
unsigned simplify_clauses(clause_vector & clauses, unsigned starting_at);
void simplify_clauses();
/**
\brief Return true if the give clause is justifying some literal.
*/
bool is_justifying(clause * cls) const {
for (unsigned i = 0; i < 2; i++) {
b_justification js;
js = get_justification((*cls)[i].var());
if (js.get_kind() == b_justification::CLAUSE && js.get_clause() == cls)
return true;
}
return false;
}
bool can_delete(clause * cls) const {
if (cls->in_reinit_stack())
return false;
return !is_justifying(cls);
}
void del_inactive_lemmas();
void del_inactive_lemmas1();
void del_inactive_lemmas2();
bool more_than_k_unassigned_literals(clause * cls, unsigned k);
void asserted_inconsistent();
bool validate_assumptions(expr_ref_vector const& asms);
void init_assumptions(expr_ref_vector const& asms);
void init_clause(expr_ref_vector const& clause);
lbool decide_clause();
void reset_tmp_clauses();
void reset_assumptions();
void add_theory_assumptions(expr_ref_vector & theory_assumptions);
lbool mk_unsat_core(lbool result);
bool should_research(lbool result);
void validate_unsat_core();
void init_search();
void end_search();
lbool search();
void inc_limits();
bool restart(lbool& status, unsigned curr_lvl);
void tick(unsigned & counter) const;
lbool bounded_search();
final_check_status final_check();
void check_proof(proof * pr);
void forget_phase_of_vars_in_current_level();
virtual bool resolve_conflict();
// -----------------------------------
//
// Propagation
//
// -----------------------------------
protected:
bool bcp();
bool propagate_eqs();
bool propagate_atoms();
void push_new_th_diseqs(enode * r, theory_var v, theory * th);
void propagate_bool_var_enode(bool_var v);
bool is_relevant_core(expr * n) const { return m_relevancy_propagator->is_relevant(n); }
bool_vector m_relevant_conflict_literals;
void record_relevancy(unsigned n, literal const* lits);
void restore_relevancy(unsigned n, literal const* lits);
public:
// event handler for relevancy_propagator class
void relevant_eh(expr * n);
bool is_relevant(expr * n) const {
return !relevancy() || is_relevant_core(n);
}
bool is_relevant(enode * n) const {
return is_relevant(n->get_expr());
}
bool is_relevant(bool_var v) const {
return is_relevant(bool_var2expr(v));
}
bool is_relevant(literal l) const {
SASSERT(l != true_literal && l != false_literal);
return is_relevant(l.var());
}
bool is_relevant_core(literal l) const {
return is_relevant_core(bool_var2expr(l.var()));
}
void mark_as_relevant(expr * n) { m_relevancy_propagator->mark_as_relevant(n); m_relevancy_propagator->propagate(); }
void mark_as_relevant(enode * n) { mark_as_relevant(n->get_expr()); }
void mark_as_relevant(bool_var v) { mark_as_relevant(bool_var2expr(v)); }
void mark_as_relevant(literal l) { mark_as_relevant(l.var()); }
template
relevancy_eh * mk_relevancy_eh(Eh const & eh) {
return m_relevancy_propagator->mk_relevancy_eh(eh);
}
void add_relevancy_eh(expr * source, relevancy_eh * eh) { m_relevancy_propagator->add_handler(source, eh); }
void add_relevancy_dependency(expr * source, expr * target) { m_relevancy_propagator->add_dependency(source, target); }
void add_rel_watch(literal l, relevancy_eh * eh) { m_relevancy_propagator->add_watch(bool_var2expr(l.var()), !l.sign(), eh); }
void add_rel_watch(literal l, expr * n) { m_relevancy_propagator->add_watch(bool_var2expr(l.var()), !l.sign(), n); }
protected:
lbool get_assignment_core(expr * n) const;
void propagate_relevancy(unsigned qhead);
bool propagate_theories();
void propagate_th_eqs();
void propagate_th_diseqs();
bool can_theories_propagate() const;
bool propagate();
void add_rec_funs_to_model();
public:
bool can_propagate() const;
// Retrieve arithmetic values.
bool get_arith_lo(expr* e, rational& lo, bool& strict);
bool get_arith_up(expr* e, rational& up, bool& strict);
bool get_arith_value(expr* e, rational& value);
// -----------------------------------
//
// Model checking... (must be improved)
//
// -----------------------------------
public:
bool get_value(enode * n, expr_ref & value);
// -----------------------------------
//
// Pretty Printing
//
// -----------------------------------
protected:
ast_mark m_pp_visited;
ast_mark & get_pp_visited() const { return const_cast(m_pp_visited); }
public:
void display_enode_defs(std::ostream & out) const;
void display_bool_var_defs(std::ostream & out) const;
void display_asserted_formulas(std::ostream & out) const;
enode_pp pp(enode* n) { return enode_pp(n, *this); }
std::ostream& display_literal(std::ostream & out, literal l) const;
std::ostream& display_detailed_literal(std::ostream & out, literal l) const { return smt::display(out, l, m, m_bool_var2expr.data()); }
void display_literal_info(std::ostream & out, literal l) const;
std::ostream& display_literals(std::ostream & out, unsigned num_lits, literal const * lits) const;
std::ostream& display_literals(std::ostream & out, literal_vector const& lits) const {
return display_literals(out, lits.size(), lits.data());
}
std::ostream& display_literal_smt2(std::ostream& out, literal lit) const;
std::ostream& display_literals_smt2(std::ostream& out, literal l1, literal l2) const { literal ls[2] = { l1, l2 }; return display_literals_smt2(out, 2, ls); }
std::ostream& display_literals_smt2(std::ostream& out, unsigned num_lits, literal const* lits) const;
std::ostream& display_literals_smt2(std::ostream& out, literal_vector const& ls) const { return display_literals_smt2(out, ls.size(), ls.data()); }
std::ostream& display_literal_verbose(std::ostream & out, literal lit) const;
std::ostream& display_literals_verbose(std::ostream & out, unsigned num_lits, literal const * lits) const;
std::ostream& display_literals_verbose(std::ostream & out, literal_vector const& lits) const {
return display_literals_verbose(out, lits.size(), lits.data());
}
void display_watch_list(std::ostream & out, literal l) const;
void display_watch_lists(std::ostream & out) const;
std::ostream& display_clause_detail(std::ostream & out, clause const * cls) const;
std::ostream& display_clause(std::ostream & out, clause const * cls) const;
std::ostream& display_clause_smt2(std::ostream & out, clause const& cls) const;
std::ostream& display_clauses(std::ostream & out, ptr_vector const & v) const;
std::ostream& display_binary_clauses(std::ostream & out) const;
void display_assignment(std::ostream & out) const;
void display_eqc(std::ostream & out) const;
void display_app_enode_map(std::ostream & out) const;
void display_expr_bool_var_map(std::ostream & out) const;
void display_relevant_exprs(std::ostream & out) const;
void display_theories(std::ostream & out) const;
void display_eq_detail(std::ostream & out, enode * n) const;
void display_parent_eqs(std::ostream & out, enode * n) const;
void display_hot_bool_vars(std::ostream & out) const;
void display_lemma_as_smt_problem(std::ostream & out, unsigned num_antecedents, literal const * antecedents, literal consequent = false_literal, symbol const& logic = symbol::null) const;
unsigned display_lemma_as_smt_problem(unsigned num_antecedents, literal const * antecedents, literal consequent = false_literal, symbol const& logic = symbol::null) const;
void display_lemma_as_smt_problem(std::ostream & out, unsigned num_antecedents, literal const * antecedents,
unsigned num_antecedent_eqs, enode_pair const * antecedent_eqs,
literal consequent = false_literal, symbol const& logic = symbol::null) const;
unsigned display_lemma_as_smt_problem(unsigned num_antecedents, literal const * antecedents,
unsigned num_antecedent_eqs, enode_pair const * antecedent_eqs,
literal consequent = false_literal, symbol const& logic = symbol::null) const;
std::string mk_lemma_name() const;
void display_assignment_as_smtlib2(std::ostream& out, symbol const& logic = symbol::null) const;
void display_normalized_enodes(std::ostream & out) const;
void display_enodes_lbls(std::ostream & out) const;
void display_decl2enodes(std::ostream & out) const;
void display_subexprs_info(std::ostream & out, expr * n) const;
void display_var_occs_histogram(std::ostream & out) const;
void display_num_min_occs(std::ostream & out) const;
void display_profile_res_sub(std::ostream & out) const;
void display_profile(std::ostream & out) const;
std::ostream& display(std::ostream& out, b_justification j) const;
std::ostream& display_compact_j(std::ostream& out, b_justification j) const;
// -----------------------------------
//
// Debugging support
//
// -----------------------------------
protected:
#ifdef Z3DEBUG
bool is_watching_clause(literal l, clause const * cls) const;
bool check_clause(clause const * cls) const;
bool check_clauses(clause_vector const & v) const;
bool check_watch_list(literal l) const;
bool check_watch_list(unsigned l_idx) const;
bool check_bin_watch_lists() const;
bool check_enode(enode * n) const;
bool check_enodes() const;
bool check_invariant() const;
bool check_eqc_bool_assignment() const;
bool check_missing_clause_propagation(clause_vector const & v) const;
bool check_missing_bin_clause_propagation() const;
bool check_missing_eq_propagation() const;
bool check_missing_congruence() const;
bool check_missing_bool_enode_propagation() const;
bool check_missing_propagation() const;
bool check_relevancy(expr_ref_vector const & v) const;
bool check_relevancy() const;
bool check_bool_var_vector_sizes() const;
bool check_th_diseq_propagation() const;
bool check_missing_diseq_conflict() const;
#endif
// -----------------------------------
//
// Introspection
//
// -----------------------------------
unsigned get_lemma_avg_activity() const;
void display_literal_num_occs(std::ostream & out) const;
void display_num_assigned_literals_per_lvl(std::ostream & out) const;
// -----------------------------------
//
// Auxiliary
//
// -----------------------------------
void init();
void flush();
config_mode get_config_mode(bool use_static_features) const;
virtual void setup_context(bool use_static_features);
void setup_components();
void pop_to_base_lvl();
void pop_to_search_lvl();
#ifdef Z3DEBUG
bool already_internalized_theory(theory * th) const;
bool already_internalized_theory_core(theory * th, expr_ref_vector const & s) const;
#endif
bool check_preamble(bool reset_cancel);
lbool check_finalize(lbool r);
// -----------------------------------
//
// API
//
// -----------------------------------
void assert_expr_core(expr * e, proof * pr);
// copy plugins into a fresh context.
void copy_plugins(context& src, context& dst);
/*
\brief Utilities for consequence finding.
*/
typedef hashtable index_set;
//typedef uint_set index_set;
u_map m_antecedents;
obj_map m_var2orig;
u_map m_assumption2orig;
obj_map m_var2val;
void extract_fixed_consequences(literal lit, index_set const& assumptions, expr_ref_vector& conseq);
void extract_fixed_consequences(unsigned& idx, index_set const& assumptions, expr_ref_vector& conseq);
void display_consequence_progress(std::ostream& out, unsigned it, unsigned nv, unsigned fixed, unsigned unfixed, unsigned eq);
unsigned delete_unfixed(expr_ref_vector& unfixed);
unsigned extract_fixed_eqs(expr_ref_vector& conseq);
expr_ref antecedent2fml(index_set const& ante);
literal mk_diseq(expr* v, expr* val);
void validate_consequences(expr_ref_vector const& assumptions, expr_ref_vector const& vars,
expr_ref_vector const& conseq, expr_ref_vector const& unfixed);
bool validate_justification(bool_var v, bool_var_data const& d, b_justification const& j);
void justify(literal lit, index_set& s);
void extract_cores(expr_ref_vector const& asms, vector& cores, unsigned& min_core_size);
void preferred_sat(literal_vector& literals);
void display_partial_assignment(std::ostream& out, expr_ref_vector const& asms, unsigned min_core_size);
void log_stats();
void copy_user_propagator(context& src, bool copy_registered);
public:
context(ast_manager & m, smt_params & fp, params_ref const & p = params_ref());
virtual ~context();
/**
\brief Return a new context containing the same theories and simplifier plugins, but with an empty
set of assertions.
If l == 0, then the logic of this context is used in the new context.
If p == 0, then this->m_params is used
*/
context * mk_fresh(symbol const * l = nullptr, smt_params * smtp = nullptr, params_ref const & p = params_ref());
static void copy(context& src, context& dst, bool override_base = false);
/**
\brief Translate context to use new manager m.
*/
app * mk_eq_atom(expr * lhs, expr * rhs);
bool set_logic(symbol const& logic) { return m_setup.set_logic(logic); }
void register_plugin(theory * th);
void add_asserted(expr* e);
void assert_expr(expr * e);
void assert_expr(expr * e, proof * pr);
void internalize_assertions();
void push();
void pop(unsigned num_scopes);
lbool check(unsigned num_assumptions = 0, expr * const * assumptions = nullptr, bool reset_cancel = true);
lbool check(expr_ref_vector const& cube, vector const& clauses);
lbool get_consequences(expr_ref_vector const& assumptions, expr_ref_vector const& vars, expr_ref_vector& conseq, expr_ref_vector& unfixed);
lbool find_mutexes(expr_ref_vector const& vars, vector& mutexes);
lbool preferred_sat(expr_ref_vector const& asms, vector& cores);
lbool setup_and_check(bool reset_cancel = true);
void reduce_assertions();
bool resource_limits_exceeded();
failure get_last_search_failure() const;
proof * get_proof();
conflict_resolution& get_cr() { return *m_conflict_resolution.get(); }
void get_relevant_labels(expr* cnstr, buffer & result);
void get_relevant_labeled_literals(bool at_lbls, expr_ref_vector & result);
void get_relevant_literals(expr_ref_vector & result);
void get_guessed_literals(expr_ref_vector & result);
void internalize_assertion(expr * n, proof * pr, unsigned generation);
void internalize_proxies(expr_ref_vector const& asms, vector>& asm2proxy);
void internalize_instance(expr * body, proof * pr, unsigned generation) {
internalize_assertion(body, pr, generation);
if (relevancy())
m_case_split_queue->internalize_instance_eh(body, generation);
}
unsigned get_unsat_core_size() const {
return m_unsat_core.size();
}
expr * get_unsat_core_expr(unsigned idx) const {
return m_unsat_core.get(idx);
}
expr_ref_vector const& unsat_core() const { return m_unsat_core; }
void get_levels(ptr_vector const& vars, unsigned_vector& depth);
expr_ref_vector get_trail(unsigned max_level);
void get_model(model_ref & m);
void set_model(model* m) { m_model = m; }
bool update_model(bool refinalize);
bool validate_model();
unsigned get_num_asserted_formulas() const { return m_asserted_formulas.get_num_formulas(); }
unsigned get_asserted_formulas_last_level() const { return m_asserted_formulas.get_formulas_last_level(); }
expr * get_asserted_formula(unsigned idx) const { return m_asserted_formulas.get_formula(idx); }
proof * get_asserted_formula_proof(unsigned idx) const { return m_asserted_formulas.get_formula_proof(idx); }
void get_asserted_formulas(ptr_vector& r) const { m_asserted_formulas.get_assertions(r); }
//proof * const * get_asserted_formula_proofs() const { return m_asserted_formulas.get_formula_proofs(); }
void get_assertions(ptr_vector & result) { m_asserted_formulas.get_assertions(result); }
void get_units(expr_ref_vector& result);
bool clause_proof_active() const { return m_clause_proof.is_enabled(); }
clause_proof& get_clause_proof() { return m_clause_proof; }
void register_on_clause(void* ctx, user_propagator::on_clause_eh_t& on_clause) {
m_clause_proof.register_on_clause(ctx, on_clause);
}
/*
* user-propagator
*/
void user_propagate_init(
void* ctx,
user_propagator::push_eh_t& push_eh,
user_propagator::pop_eh_t& pop_eh,
user_propagator::fresh_eh_t& fresh_eh);
void user_propagate_register_final(user_propagator::final_eh_t& final_eh) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_final(final_eh);
}
void user_propagate_register_fixed(user_propagator::fixed_eh_t& fixed_eh) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_fixed(fixed_eh);
}
void user_propagate_register_eq(user_propagator::eq_eh_t& eq_eh) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_eq(eq_eh);
}
void user_propagate_register_diseq(user_propagator::eq_eh_t& diseq_eh) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_diseq(diseq_eh);
}
void user_propagate_register_expr(expr* e) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->add_expr(e, true);
}
void user_propagate_register_created(user_propagator::created_eh_t& r) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_created(r);
}
void user_propagate_register_decide(user_propagator::decide_eh_t& r) {
if (!m_user_propagator)
throw default_exception("user propagator must be initialized");
m_user_propagator->register_decide(r);
}
bool watches_fixed(enode* n) const;
bool has_split_candidate(bool_var& var, bool& is_pos);
bool decide_user_interference(bool_var& var, bool& is_pos);
void assign_fixed(enode* n, expr* val, unsigned sz, literal const* explain);
void assign_fixed(enode* n, expr* val, literal_vector const& explain) {
assign_fixed(n, val, explain.size(), explain.data());
}
void assign_fixed(enode* n, expr* val, literal explain) {
assign_fixed(n, val, 1, &explain);
}
bool is_fixed(enode* n, expr_ref& val, literal_vector& explain);
void display(std::ostream & out) const;
void display_unsat_core(std::ostream & out) const;
void collect_statistics(::statistics & st) const;
void display_statistics(std::ostream & out) const;
void display_istatistics(std::ostream & out) const;
// -----------------------------------
//
// Macros
//
// -----------------------------------
public:
unsigned get_num_macros() const { return m_asserted_formulas.get_num_macros(); }
unsigned get_first_macro_last_level() const { return m_asserted_formulas.get_first_macro_last_level(); }
func_decl * get_macro_func_decl(unsigned i) const { return m_asserted_formulas.get_macro_func_decl(i); }
func_decl * get_macro_interpretation(unsigned i, expr_ref & interp) const { return m_asserted_formulas.get_macro_interpretation(i, interp); }
quantifier * get_macro_quantifier(func_decl * f) const { return m_asserted_formulas.get_macro_quantifier(f); }
void insert_macro(func_decl * f, quantifier * m, proof * pr, expr_dependency * dep) { m_asserted_formulas.insert_macro(f, m, pr, dep); }
};
struct pp_lit {
context & ctx;
literal lit;
pp_lit(context & ctx, literal lit) : ctx(ctx), lit(lit) {}
};
inline std::ostream & operator<<(std::ostream & out, pp_lit const & pp) {
return pp.ctx.display_detailed_literal(out, pp.lit);
}
struct pp_lits {
context & ctx;
literal const *lits;
unsigned len;
pp_lits(context & ctx, unsigned len, literal const *lits) : ctx(ctx), lits(lits), len(len) {}
pp_lits(context & ctx, literal_vector const& ls) : ctx(ctx), lits(ls.data()), len(ls.size()) {}
};
inline std::ostream & operator<<(std::ostream & out, pp_lits const & pp) {
out << "{";
bool first = true;
for (unsigned i = 0; i < pp.len; ++i) {
if (first) { first = false; } else { out << " or\n"; }
pp.ctx.display_detailed_literal(out, pp.lits[i]);
}
return out << "}";
}
struct enode_eq_pp {
context const& ctx;
enode_pair const& p;
enode_eq_pp(enode_pair const& p, context const& ctx): ctx(ctx), p(p) {}
};
std::ostream& operator<<(std::ostream& out, enode_eq_pp const& p);
std::ostream& operator<<(std::ostream& out, enode_pp const& p);
};