z3-z3-4.13.0.src.smt.theory_arith_int.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
theory_arith_int.h
Abstract:
Author:
Leonardo de Moura (leonardo) 2008-06-17.
Revision History:
--*/
// clang-format off
#pragma once
#include "util/numeral_buffer.h"
#include "ast/ast_ll_pp.h"
#include "ast/well_sorted.h"
#include "ast/ast_smt2_pp.h"
namespace smt {
// -----------------------------------
//
// Integrality
//
// -----------------------------------
/**
\brief Move non base variables to one of its bounds.
If the variable does not have bounds, it is integer, but it is not assigned to an integer value, then the
variable is set to an integer value.
In mixed integer/real problems moving a real variable to a bound could cause an integer value to
have an infinitesimal. Such an assignment would disable mk_gomory_cut, and Z3 would loop.
*/
template
void theory_arith::move_non_base_vars_to_bounds() {
theory_var num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (is_non_base(v)) {
bound * l = lower(v);
bound * u = upper(v);
const inf_numeral & val = get_value(v);
if (l != nullptr && u != nullptr) {
if (val != l->get_value() && val != u->get_value())
set_value(v, l->get_value());
}
else if (l != nullptr) {
if (val != l->get_value())
set_value(v, l->get_value());
}
else if (u != nullptr) {
if (val != u->get_value())
set_value(v, u->get_value());
}
else {
if (is_int(v) && !val.is_int()) {
inf_numeral new_val(floor(val));
set_value(v, new_val);
}
}
}
}
}
/**
\brief Returns true if the there is an integer variable
that is not assigned to an integer value.
*/
template
bool theory_arith::has_infeasible_int_var() {
int num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (is_int(v) && !get_value(v).is_int())
return true;
}
return false;
}
/**
\brief Find an integer base var that is not assigned to an
integer value, but is bounded (i.e., it has lower and upper
bounds). Return null_var_id if all integer base variables are
assigned to integer values.
If there are multiple variables satisfying the condition above,
then select the one with the tightest bound.
*/
template
theory_var theory_arith::find_bounded_infeasible_int_base_var() {
theory_var result = null_theory_var;
numeral range;
numeral new_range;
numeral small_range_threshold(1024);
unsigned n = 0;
for (row const& row : m_rows) {
theory_var v = row.get_base_var();
if (v == null_theory_var)
continue;
if (!is_base(v))
continue;
if (!is_int(v))
continue;
if (get_value(v).is_int())
continue;
if (!is_bounded(v))
continue;
numeral const & l = lower_bound(v).get_rational();
numeral const & u = upper_bound(v).get_rational();
new_range = u;
new_range -= l;
if (new_range > small_range_threshold) {
//
}
else if (result == null_theory_var || new_range < range) {
result = v;
range = new_range;
n = 1;
}
else if (new_range == range) {
n++;
if (m_random() % n == 0) {
result = v;
range = new_range;
}
}
}
return result;
}
/**
\brief Find an integer base var that is not assigned to an integer value.
Return null_var_id if all integer base variables are assigned to
integer values.
\remark This method gives preference to bounded integer variables.
If all variables are unbounded, then it selects a random one.
*/
template
theory_var theory_arith::find_infeasible_int_base_var() {
theory_var r = find_bounded_infeasible_int_base_var();
CTRACE("find_infeasible_int_base_var", r != null_theory_var, display_var(tout << "bounded infeasible", r););
unsigned n = 0;
#define SELECT_VAR(VAR) if (r == null_theory_var) { n = 1; r = VAR; } else { n++; SASSERT(n >= 2); if (m_random() % n == 0) r = VAR; }
numeral small_value(1024);
if (r == null_theory_var) {
for (auto const& row : m_rows) {
theory_var v = row.get_base_var();
if (v != null_theory_var && is_base(v) && is_int(v) && !get_value(v).is_int()) {
if (abs(get_value(v)) < small_value) {
SELECT_VAR(v);
}
else if (upper(v) && small_value > upper_bound(v) - get_value(v)) {
SELECT_VAR(v);
}
else if (lower(v) && small_value > get_value(v) - lower_bound(v)) {
SELECT_VAR(v);
}
}
}
CTRACE("find_infeasible_int_base_var", r != null_theory_var, tout << "found small value v" << r << "\n");
}
if (r == null_theory_var) {
for (auto const& row : m_rows) {
theory_var v = row.get_base_var();
if (v != null_theory_var && is_base(v) && is_int(v) && !get_value(v).is_int()) {
SELECT_VAR(v);
}
}
CTRACE("find_infeasible_int_base_var", r != null_theory_var, tout << "found base v" << r << "\n");
}
if (r == null_theory_var) {
for (auto const& row : m_rows) {
theory_var v = row.get_base_var();
if (v != null_theory_var && is_quasi_base(v) && is_int(v) && !get_value(v).is_int()) {
quasi_base_row2base_row(get_var_row(v));
SELECT_VAR(v);
}
}
CTRACE("find_infeasible_int_base_var", r != null_theory_var, tout << "found quasi base v" << r << "\n");
}
CASSERT("arith", wf_rows());
CASSERT("arith", wf_columns());
return r;
}
/**
\brief Create "branch and bound" case-split.
*/
template
void theory_arith::branch_infeasible_int_var(theory_var v) {
SASSERT(is_int(v));
SASSERT(!get_value(v).is_int());
ast_manager & m = get_manager();
m_stats.m_branches++;
numeral k = ceil(get_value(v));
rational _k = k.to_rational();
TRACE("arith_int", tout << "branching v" << v << " = " << get_value(v) << "\n";
display_var(tout, v);
tout << "k = " << k << ", _k = "<< _k << std::endl;
);
expr_ref bound(m);
expr* e = get_enode(v)->get_expr();
bound = m_util.mk_ge(e, m_util.mk_numeral(_k, m_util.is_int(e)));
context & ctx = get_context();
{
std::function fn = [&]() { return m.mk_or(bound, m.mk_not(bound)); };
scoped_trace_stream _sts(*this, fn);
IF_VERBOSE(10, verbose_stream() << "branch " << bound << "\n");
TRACE("arith_int", tout << mk_bounded_pp(bound, m) << "\n";);
ctx.internalize(bound, true);
ctx.mark_as_relevant(bound.get());
}
}
/**
\brief Create a "cut from proof" lemma.
The set of rows where the base variable is tight are extracted.
These row equalities are checked for integer feasiability.
If they are not integer feasible, then an integer infeasible
equation, that is implied from the extracted equalities is extracted.
The extracted equality a*x = 0 is blocked by asserting the disjunction
(a*x > 0 \/ a*x < 0)
*/
template
bool theory_arith::branch_infeasible_int_equality() {
vector > rows;
unsigned max_row = 1; // all rows should contain a constant in the last position.
u_map var2index; // map theory variables to positions in 'rows'.
u_map index2var; // map back positions in 'rows' to theory variables.
context& ctx = get_context();
ast_manager& m = get_manager();
if (ctx.get_cancel_flag())
return false;
for (auto const& r : m_rows) {
theory_var b = r.get_base_var();
if (b == null_theory_var) {
TRACE("arith_int", display_row(tout << "null: ", r, true); );
continue;
}
bool is_tight = false;
numeral const_coeff(0);
bound* l = lower(b), *u = upper(b);
if (l != nullptr && get_value(b) - inf_numeral(1) < l->get_value()) {
SASSERT(l->get_value() <= get_value(b));
is_tight = true;
const_coeff = l->get_value().get_rational();
}
else if (u != nullptr && get_value(b) + inf_numeral(1) > u->get_value()) {
SASSERT(get_value(b) <= u->get_value());
is_tight = true;
const_coeff = u->get_value().get_rational();
}
if (!is_tight) {
TRACE("arith_int",
display_row(tout << "!tight: ", r, true);
display_var(tout, b);
);
continue;
}
rows.push_back(vector(max_row));
vector& row = rows.back();
numeral denom(1);
unsigned index = 0;
typename vector::const_iterator it_r = r.begin_entries();
typename vector::const_iterator end_r = r.end_entries();
for (; it_r != end_r && is_tight; ++it_r) {
if (it_r->is_dead())
continue;
theory_var x = it_r->m_var;
if (x == b)
continue;
numeral coeff = it_r->m_coeff;
if (is_fixed(x)) {
const_coeff += coeff*lower(x)->get_value().get_rational();
continue;
}
if (!is_int(x)) {
TRACE("arith_int", display_row(tout << "!int: ", r, true); );
is_tight = false;
continue;
}
if (var2index.find(x, index)) {
row[index] = coeff.to_rational();
}
else {
row.push_back(coeff.to_rational());
var2index.insert(x, max_row);
index2var.insert(max_row, x);
++max_row;
}
numeral tmp_coeff = denominator(coeff);
denom = lcm(tmp_coeff, denom);
}
if (!is_tight) {
rows.pop_back();
continue;
}
row[0] = const_coeff.to_rational();
numeral tmp_const_coeff = denominator(const_coeff);
denom = lcm(tmp_const_coeff, denom);
if (!denom.is_one()) {
for (unsigned i = 0; i < max_row; ++i) {
row[i] *= denom.to_rational();
}
}
TRACE("arith_int",
tout << "extracted row:\n";
for (unsigned i = 0; i < max_row; ++i) {
tout << row[i] << " ";
}
tout << " = 0\n";
tout << "base value: " << get_value(b) << "\n";
display_row(tout, r, true);
);
}
//
// Align the sizes of rows.
// The sizes are monotonically increasing.
//
for (unsigned i = 0; i < rows.size(); ++i) {
unsigned sz = rows[i].size();
SASSERT(sz <= max_row);
if (sz == max_row) {
break;
}
rows[i].resize(max_row);
}
vector unsat_row;
if (m_arith_eq_solver.solve_integer_equations(rows, unsat_row)) {
// The equalities were integer feasiable.
return false;
}
buffer pol;
for (unsigned i = 1; i < unsat_row.size(); ++i) {
numeral c(unsat_row[i]);
if (!c.is_zero()) {
theory_var var;
if (!index2var.find(i, var)) {
UNREACHABLE();
}
pol.push_back(row_entry(c, var));
}
}
if (pol.empty()) {
TRACE("arith_int", tout << "The witness is trivial\n";);
return false;
}
expr_ref p1(get_manager()), p2(get_manager());
mk_polynomial_ge(pol.size(), pol.data(), -unsat_row[0]+rational(1), p1);
for (unsigned i = 0; i < pol.size(); ++i) {
pol[i].m_coeff.neg();
}
mk_polynomial_ge(pol.size(), pol.data(), unsat_row[0]+rational(1), p2);
{
std::function fn = [&]() { return m.mk_or(p1, p2); };
scoped_trace_stream _sts(*this, fn);
ctx.internalize(p1, false);
ctx.internalize(p2, false);
literal l1(ctx.get_literal(p1)), l2(ctx.get_literal(p2));
ctx.mark_as_relevant(p1.get());
ctx.mark_as_relevant(p2.get());
ctx.mk_th_axiom(get_id(), l1, l2);
}
TRACE("arith_int",
tout << "cut: (or " << mk_pp(p1, get_manager()) << " " << mk_pp(p2, get_manager()) << ")\n";
);
return true;
}
/**
\brief Create bounds for (non base) free vars in the given row.
Return true if at least one variable was constrained.
This method is used to enable the application of gomory cuts.
*/
template
bool theory_arith::constrain_free_vars(row const & r) {
bool result = false;
theory_var b = r.get_base_var();
SASSERT(b != null_theory_var);
typename vector::const_iterator it = r.begin_entries();
typename vector::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead() && it->m_var != b && is_free(it->m_var)) {
theory_var v = it->m_var;
expr* e = get_enode(v)->get_expr();
bool _is_int = m_util.is_int(e);
expr_ref bound(m_util.mk_ge(e, m_util.mk_numeral(rational::zero(), _is_int)), get_manager());
context & ctx = get_context();
{
std::function fn = [&]() { return bound; };
scoped_trace_stream _sts(*this, fn);
ctx.internalize(bound, true);
}
IF_VERBOSE(10, verbose_stream() << "free " << bound << "\n");
ctx.mark_as_relevant(bound.get());
result = true;
}
}
return result;
}
/**
\brief Return true if it is possible to apply a gomory cut on the given row.
\sa constrain_free_vars
*/
template
bool theory_arith::is_gomory_cut_target(row const & r) {
theory_var b = r.get_base_var();
for (auto& e : r) {
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
if (!e.is_dead() && e.m_var != b && (!at_bound(e.m_var) || !get_value(e.m_var).is_rational()))
return false;
}
return true;
}
template
void theory_arith::mk_polynomial_ge(unsigned num_args, row_entry const * args, rational const& k, expr_ref & result) {
// Remark: the polynomials internalized by theory_arith may not satisfy poly_simplifier_plugin->wf_polynomial assertion.
bool all_int = true;
for (unsigned i = 0; i < num_args && all_int; ++i) {
all_int = is_int(args[i].m_var);
}
ast_manager & m = get_manager();
expr_ref_vector _args(m);
for (unsigned i = 0; i < num_args; i++) {
rational _k = args[i].m_coeff.to_rational();
expr * x = get_enode(args[i].m_var)->get_expr();
if (m_util.is_int(x) && !all_int)
x = m_util.mk_to_real(x);
if (_k.is_one())
_args.push_back(x);
else
_args.push_back(m_util.mk_mul(m_util.mk_numeral(_k, m_util.is_int(x)), x));
}
expr_ref pol(m);
pol = m_util.mk_add(_args.size(), _args.data());
result = m_util.mk_ge(pol, m_util.mk_numeral(k, all_int));
TRACE("arith_mk_polynomial", tout << "before simplification:\n" << result << "\n";);
proof_ref pr(m);
get_context().get_rewriter()(result, result, pr);
TRACE("arith_mk_polynomial", tout << "after simplification:\n" << result << "\n";);
SASSERT(is_well_sorted(get_manager(), result));
}
template
class theory_arith::gomory_cut_justification : public ext_theory_propagation_justification {
public:
gomory_cut_justification(family_id fid, context& ctx,
unsigned num_lits, literal const * lits,
unsigned num_eqs, enode_pair const * eqs,
antecedents& bounds,
literal consequent):
ext_theory_propagation_justification(fid, ctx, num_lits, lits, num_eqs, eqs, consequent,
bounds.num_params(), bounds.params("gomory-cut")) {
}
// Remark: the assignment must be propagated back to arith
theory_id get_from_theory() const override { return null_theory_id; }
};
/**
\brief Create a gomory cut for the given row.
*/
template
bool theory_arith::mk_gomory_cut(row const & r) {
// The following assertion is wrong. It may be violated in mixed-integer problems.
// SASSERT(!all_coeff_int(r));
theory_var x_i = r.get_base_var();
SASSERT(is_int(x_i));
// The following assertion is wrong. It may be violated in mixed-real-integer problems.
// The check is_gomory_cut_target will discard rows where any variable contains infinitesimals.
// SASSERT(m_value[x_i].is_rational()); // infinitesimals are not used for integer variables
SASSERT(!m_value[x_i].is_int()); // the base variable is not assigned to an integer value.
bool cfv = constrain_free_vars(r);
if (cfv || !is_gomory_cut_target(r)) {
TRACE("gomory_cut", tout << "failed to apply gomory cut:\n";
tout << "constrain_free_vars(r): " << cfv << "\n";);
return false;
}
TRACE("gomory_cut", tout << "applying cut at:\n"; display_row_info(tout, r););
antecedents ante(*this);
m_stats.m_gomory_cuts++;
// gomory will be pol >= k
numeral k(1);
buffer pol;
numeral f_0 = Ext::fractional_part(m_value[x_i]);
numeral one_minus_f_0 = numeral(1) - f_0;
SASSERT(!f_0.is_zero());
SASSERT(!one_minus_f_0.is_zero());
numeral lcm_den(1);
unsigned num_ints = 0;
for (row_entry const& e : r) {
if (!e.is_dead() && e.m_var != x_i) {
theory_var x_j = e.m_var;
numeral a_ij = e.m_coeff;
a_ij.neg(); // make the used format compatible with the format used in: Integrating Simplex with DPLL(T)
if (is_real(x_j)) {
numeral new_a_ij;
if (at_lower(x_j)) {
if (a_ij.is_pos()) {
new_a_ij = a_ij / one_minus_f_0;
}
else {
new_a_ij = a_ij / f_0;
new_a_ij.neg();
}
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
}
else {
SASSERT(at_upper(x_j));
if (a_ij.is_pos()) {
new_a_ij = a_ij / f_0;
new_a_ij.neg(); // the upper terms are inverted.
}
else {
new_a_ij = a_ij / one_minus_f_0;
}
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
}
TRACE("gomory_cut_detail", tout << a_ij << "*v" << x_j << " k: " << k << "\n";);
pol.push_back(row_entry(new_a_ij, x_j));
}
else {
++num_ints;
SASSERT(is_int(x_j));
numeral f_j = Ext::fractional_part(a_ij);
TRACE("gomory_cut_detail",
tout << a_ij << "*v" << x_j << "\n";
tout << "fractional_part: " << Ext::fractional_part(a_ij) << "\n";
tout << "f_j: " << f_j << "\n";
tout << "f_0: " << f_0 << "\n";
tout << "one_minus_f_0: " << one_minus_f_0 << "\n";);
if (!f_j.is_zero()) {
numeral new_a_ij;
if (at_lower(x_j)) {
if (f_j <= one_minus_f_0) {
new_a_ij = f_j / one_minus_f_0;
}
else {
new_a_ij = (numeral(1) - f_j) / f_0;
}
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
}
else {
SASSERT(at_upper(x_j));
if (f_j <= f_0) {
new_a_ij = f_j / f_0;
}
else {
new_a_ij = (numeral(1) - f_j) / one_minus_f_0;
}
new_a_ij.neg(); // the upper terms are inverted
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
}
TRACE("gomory_cut_detail", tout << "new_a_ij: " << new_a_ij << " k: " << k << "\n";);
pol.push_back(row_entry(new_a_ij, x_j));
lcm_den = lcm(lcm_den, denominator(new_a_ij));
}
}
}
}
CTRACE("empty_pol", pol.empty(), display_row_info(tout, r););
expr_ref bound(get_manager());
if (pol.empty()) {
if (ante.lits().empty() && ante.eqs().empty())
return false;
SASSERT(k.is_pos());
// conflict 0 >= k where k is positive
set_conflict(ante, ante, "gomory-cut");
return true;
}
else if (pol.size() == 1) {
theory_var v = pol[0].m_var;
k /= pol[0].m_coeff;
bool is_lower = pol[0].m_coeff.is_pos();
if (is_int(v) && !k.is_int()) {
k = is_lower?ceil(k):floor(k);
}
rational _k = k.to_rational();
if (is_lower)
bound = m_util.mk_ge(get_enode(v)->get_expr(), m_util.mk_numeral(_k, is_int(v)));
else
bound = m_util.mk_le(get_enode(v)->get_expr(), m_util.mk_numeral(_k, is_int(v)));
}
else {
if (num_ints > 0) {
lcm_den = lcm(lcm_den, denominator(k));
TRACE("gomory_cut_detail", tout << "k: " << k << " lcm_den: " << lcm_den << "\n";
for (unsigned i = 0; i < pol.size(); i++) {
tout << pol[i].m_coeff << " " << pol[i].m_var << "\n";
}
tout << "k: " << k << "\n";);
SASSERT(lcm_den.is_pos());
if (!lcm_den.is_one()) {
// normalize coefficients of integer parameters to be integers.
unsigned n = pol.size();
for (unsigned i = 0; i < n; i++) {
pol[i].m_coeff *= lcm_den;
SASSERT(!is_int(pol[i].m_var) || pol[i].m_coeff.is_int());
}
k *= lcm_den;
}
TRACE("gomory_cut_detail", tout << "after *lcm\n";
for (unsigned i = 0; i < pol.size(); i++) {
tout << pol[i].m_coeff << " * v" << pol[i].m_var << "\n";
}
tout << "k: " << k << "\n";);
}
mk_polynomial_ge(pol.size(), pol.data(), k.to_rational(), bound);
}
TRACE("gomory_cut", tout << "new cut:\n" << bound << "\n"; ante.display(tout););
literal l = null_literal;
context & ctx = get_context();
{
std::function fn = [&]() { return bound; };
scoped_trace_stream _sts(*this, fn);
ctx.internalize(bound, true);
}
l = ctx.get_literal(bound);
IF_VERBOSE(10, verbose_stream() << "cut " << bound << "\n");
ctx.mark_as_relevant(l);
auto js = ctx.mk_justification(
gomory_cut_justification(
get_id(), ctx,
ante.lits().size(), ante.lits().data(),
ante.eqs().size(), ante.eqs().data(), ante, l));
if (l == false_literal)
ctx.mk_clause(0, nullptr, js, CLS_TH_LEMMA, nullptr);
else
ctx.assign(l, js);
return true;
}
/**
\brief Return false if the row failed the GCD test, that is, a conflict was detected.
\remark if the variables with the least coefficient are bounded,
then the ext_gcd_test is invoked.
*/
template
bool theory_arith::gcd_test(row const & r) {
if (!m_params.m_arith_gcd_test)
return true;
m_stats.m_gcd_tests++;
numeral lcm_den = r.get_denominators_lcm();
TRACE("gcd_test_bug", r.display(tout); tout << "lcm: " << lcm_den << "\n";);
numeral consts(0);
numeral gcds(0);
numeral least_coeff(0);
bool least_coeff_is_bounded = false;
for (row_entry const& e : r) {
if (!e.is_dead()) {
if (is_fixed(e.m_var)) {
// WARNING: it is not safe to use get_value(e.m_var) here, since
// get_value(e.m_var) may not satisfy e.m_var bounds at this point.
numeral aux = lcm_den * e.m_coeff;
consts += aux * lower_bound(e.m_var).get_rational();
}
else if (is_real(e.m_var)) {
return true;
}
else if (gcds.is_zero()) {
gcds = abs(lcm_den * e.m_coeff);
least_coeff = gcds;
least_coeff_is_bounded = is_bounded(e.m_var);
}
else {
numeral aux = abs(lcm_den * e.m_coeff);
gcds = gcd(gcds, aux);
if (aux < least_coeff) {
least_coeff = aux;
least_coeff_is_bounded = is_bounded(e.m_var);
}
else if (least_coeff_is_bounded && aux == least_coeff) {
least_coeff_is_bounded = is_bounded(e.m_var);
}
}
SASSERT(gcds.is_int());
SASSERT(least_coeff.is_int());
TRACE("gcd_test_bug", tout << "coeff: " << e.m_coeff << ", gcds: " << gcds
<< " least_coeff: " << least_coeff << " consts: " << consts << "\n";);
}
}
if (gcds.is_zero()) {
// All variables are fixed.
// This theory guarantees that the assignment satisfies each row, and
// fixed integer variables are assigned to integer values.
return true;
}
if (!(consts / gcds).is_int()) {
TRACE("gcd_test", tout << "row failed the GCD test:\n"; display_row_info(tout, r););
antecedents ante(*this);
m_stats.m_gcd_conflicts++;
collect_fixed_var_justifications(r, ante);
context & ctx = get_context();
ctx.set_conflict(
ctx.mk_justification(
ext_theory_conflict_justification(
get_id(), ctx, ante.lits().size(), ante.lits().data(),
ante.eqs().size(), ante.eqs().data(),
ante.num_params(), ante.params("gcd-test"))));
return false;
}
if (least_coeff.is_one() && !least_coeff_is_bounded) {
SASSERT(gcds.is_one());
return true;
}
if (least_coeff_is_bounded) {
return ext_gcd_test(r, least_coeff, lcm_den, consts);
}
return true;
}
/**
\brief Auxiliary method for gcd_test.
*/
template
bool theory_arith::ext_gcd_test(row const & r, numeral const & least_coeff,
numeral const & lcm_den, numeral const & consts) {
numeral gcds(0);
numeral l(consts);
numeral u(consts);
antecedents ante(*this);
for (auto const& e : r) {
if (!e.is_dead() && !is_fixed(e.m_var)) {
theory_var v = e.m_var;
SASSERT(!is_real(v));
numeral ncoeff = lcm_den * e.m_coeff;
SASSERT(ncoeff.is_int());
numeral abs_ncoeff = abs(ncoeff);
if (abs_ncoeff == least_coeff) {
SASSERT(is_bounded(v));
if (ncoeff.is_pos()) {
// l += ncoeff * lower_bound(v).get_rational();
l.addmul(ncoeff, lower_bound(v).get_rational());
// u += ncoeff * upper_bound(v).get_rational();
u.addmul(ncoeff, upper_bound(v).get_rational());
}
else {
// l += ncoeff * upper_bound(v).get_rational();
l.addmul(ncoeff, upper_bound(v).get_rational());
// u += ncoeff * lower_bound(v).get_rational();
u.addmul(ncoeff, lower_bound(v).get_rational());
}
lower(v)->push_justification(ante, e.m_coeff, coeffs_enabled());
upper(v)->push_justification(ante, e.m_coeff, coeffs_enabled());
}
else if (gcds.is_zero()) {
gcds = abs_ncoeff;
}
else {
gcds = gcd(gcds, abs_ncoeff);
}
SASSERT(gcds.is_int());
}
}
if (gcds.is_zero()) {
return true;
}
numeral l1 = ceil(l/gcds);
numeral u1 = floor(u/gcds);
if (u1 < l1) {
m_stats.m_gcd_conflicts++;
TRACE("gcd_test", tout << "row failed the extended GCD test:\n"; display_row_info(tout, r););
collect_fixed_var_justifications(r, ante);
context & ctx = get_context();
ctx.set_conflict(
ctx.mk_justification(
ext_theory_conflict_justification(
get_id(), ctx,
ante.lits().size(), ante.lits().data(), ante.eqs().size(), ante.eqs().data(),
ante.num_params(), ante.params("gcd-test"))));
return false;
}
return true;
}
/**
\brief Return true if all rows pass the GCD test.
*/
template
bool theory_arith::gcd_test() {
if (!m_params.m_arith_gcd_test)
return true;
if (m_eager_gcd)
return true;
for (auto const& e : m_rows) {
theory_var v = e.get_base_var();
if (v != null_theory_var && is_int(v) && !get_value(v).is_int() && !gcd_test(e)) {
if (m_params.m_arith_adaptive_gcd)
m_eager_gcd = true;
return false;
}
}
return true;
}
/**
\brief Try to create bounds for unbounded infeasible integer variables.
Return false if an inconsistency is detected.
*/
template
bool theory_arith::max_min_infeasible_int_vars() {
var_set & already_processed = m_tmp_var_set;
already_processed.reset();
svector vars;
for (;;) {
vars.reset();
// Collect infeasible integer variables.
for (auto const& e : m_rows) {
theory_var v = e.get_base_var();
if (v != null_theory_var && is_int(v) && !get_value(v).is_int() && !is_bounded(v) && !already_processed.contains(v)) {
vars.push_back(v);
already_processed.insert(v);
}
}
if (vars.empty())
return true;
if (max_min(vars))
return false;
}
}
/**
\brief Try to patch int infeasible vars using freedom intervals.
*/
template
void theory_arith::patch_int_infeasible_vars() {
SASSERT(m_to_patch.empty());
int num = get_num_vars();
bool inf_l, inf_u;
inf_numeral l, u;
numeral m;
for (theory_var v = 0; v < num; v++) {
if (!is_non_base(v))
continue;
get_freedom_interval(v, inf_l, l, inf_u, u, m);
if (m.is_one() && get_value(v).is_int())
continue;
// check whether value of v is already a multiple of m.
if ((get_value(v).get_rational() / m).is_int())
continue;
TRACE("patch_int",
tout << "TARGET v" << v << " -> [";
if (inf_l) tout << "-oo"; else tout << ceil(l);
tout << ", ";
if (inf_u) tout << "oo"; else tout << floor(u);
tout << "]";
tout << ", m: " << m << ", val: " << get_value(v) << ", is_int: " << is_int(v) << "\n";);
if (!inf_l)
l = ceil(l);
if (!inf_u)
u = floor(u);
if (!m.is_one()) {
if (!inf_l)
l = m*ceil(l/m);
if (!inf_u)
u = m*floor(u/m);
}
if (!inf_l && !inf_u && l > u)
continue; // cannot patch
if (!inf_l)
set_value(v, l);
else if (!inf_u)
set_value(v, u);
else
set_value(v, inf_numeral(0));
}
SASSERT(m_to_patch.empty());
}
/**
\brief Force all non basic variables to be assigned to integer values.
*/
template
void theory_arith::fix_non_base_vars() {
int num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (!is_non_base(v))
continue;
if (!is_int(v))
continue;
if (get_value(v).is_int())
continue;
inf_numeral new_val(floor(get_value(v)));
set_value(v, new_val);
}
if (!make_feasible())
failed();
}
/**
\brief Return FC_DONE if the assignment is int feasible. Otherwise, apply GCD test,
branch and bound and Gomory Cuts.
*/
template
final_check_status theory_arith::check_int_feasibility() {
TRACE("arith_int_detail", get_context().display(tout););
if (!has_infeasible_int_var()) {
TRACE("arith", tout << "FC_DONE 1...\n"; display(tout););
return FC_DONE;
}
TRACE("arith",
int num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (is_int(v) && !get_value(v).is_int()) {
numeral f1 = get_value(v).get_rational() - floor(get_value(v).get_rational());
numeral f2 = ceil(get_value(v).get_rational()) - get_value(v).get_rational();
if (f2 < f1)
f1 = f2;
tout << "v" << v << " -> " << f1 << " ";
display_var(tout, v);
}
});
TRACE("arith_int_fracs_min_max",
numeral max(0);
numeral min(1);
int num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (is_int(v) && !get_value(v).is_int()) {
numeral f1 = get_value(v).get_rational() - floor(get_value(v).get_rational());
numeral f2 = ceil(get_value(v).get_rational()) - get_value(v).get_rational();
if (f1 < min) min = f1;
if (f2 < min) min = f2;
if (f1 > max) max = f1;
if (f2 > max) max = f2;
}
}
tout << "max: " << max << ", min: " << min << "\n";);
if (m_params.m_arith_ignore_int) {
TRACE("arith", tout << "Ignore int: give up\n";);
return FC_GIVEUP;
}
if (!gcd_test())
return FC_CONTINUE;
if (get_context().inconsistent())
return FC_CONTINUE;
remove_fixed_vars_from_base();
TRACE("arith_int_freedom",
int num = get_num_vars();
bool inf_l; bool inf_u;
inf_numeral l; inf_numeral u;
numeral m;
for (theory_var v = 0; v < num; v++) {
if (is_non_base(v)) {
get_freedom_interval(v, inf_l, l, inf_u, u, m);
if ((!m.is_one() /* && !l.is_zero() */) || !get_value(v).is_int()) {
tout << "TARGET v" << v << " -> [";
if (inf_l) tout << "-oo"; else tout << ceil(l);
tout << ", ";
if (inf_u) tout << "oo"; else tout << floor(u);
tout << "]";
tout << ", m: " << m << ", val: " << get_value(v) << ", is_int: " << is_int(v) << "\n";
}
}
});
m_stats.m_patches++;
patch_int_infeasible_vars();
fix_non_base_vars();
if (get_context().inconsistent())
return FC_CONTINUE;
TRACE("arith_int_inf",
int num = get_num_vars();
for (theory_var v = 0; v < num; v++) {
if (is_int(v) && !get_value(v).is_int()) {
display_var(tout, v);
}
});
TRACE("arith_int_rows",
unsigned num = 0;
for (auto const& e : m_rows) {
theory_var v = e.get_base_var();
if (v == null_theory_var)
continue;
if (is_int(v) && !get_value(v).is_int()) {
num++;
display_simplified_row(tout, e);
tout << "\n";
}
}
tout << "num infeasible: " << num << "\n";);
theory_var int_var = find_infeasible_int_base_var();
if (int_var == null_theory_var) {
m_stats.m_patches_succ++;
TRACE("arith_int_incomp", tout << "FC_DONE 2...\n"; display(tout););
return m_liberal_final_check || !m_changed_assignment ? FC_DONE : FC_CONTINUE;
}
#if 0
if (find_bounded_infeasible_int_base_var() == null_theory_var) {
// TODO: this is too expensive... I should replace it by a procedure
// that refine bounds using the current state of the tableau.
if (!max_min_infeasible_int_vars())
return FC_CONTINUE;
if (!gcd_test())
return FC_CONTINUE;
}
#endif
m_branch_cut_counter++;
// TODO: add giveup code
TRACE("gomory_cut", tout << m_branch_cut_counter << ", " << m_params.m_arith_branch_cut_ratio << std::endl;);
if (m_branch_cut_counter % m_params.m_arith_branch_cut_ratio == 0) {
TRACE("opt_verbose", display(tout););
move_non_base_vars_to_bounds();
if (!make_feasible()) {
TRACE("arith_int", tout << "failed to move variables to bounds.\n";);
failed();
return FC_CONTINUE;
}
theory_var int_var = find_infeasible_int_base_var();
if (int_var != null_theory_var) {
TRACE("arith_int", tout << "v" << int_var << " does not have an integer assignment: " << get_value(int_var) << "\n";);
SASSERT(is_base(int_var));
row const & r = m_rows[get_var_row(int_var)];
if (!mk_gomory_cut(r)) {
TRACE("gomory_cut", tout << "silent failure\n";);
}
return FC_CONTINUE;
}
}
else {
if (m_params.m_arith_int_eq_branching && branch_infeasible_int_equality()) {
++m_stats.m_branch_infeasible_int;
return FC_CONTINUE;
}
theory_var int_var = find_infeasible_int_base_var();
if (int_var != null_theory_var) {
TRACE("arith_int", tout << "v" << int_var << " does not have an integer assignment: " << get_value(int_var) << "\n";);
// apply branching
branch_infeasible_int_var(int_var);
++m_stats.m_branch_infeasible_var;
return FC_CONTINUE;
}
}
return m_liberal_final_check || !m_changed_assignment ? FC_DONE : FC_CONTINUE;
}
};