z3-z3-4.13.0.src.smt.theory_array_bapa.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
theory_array_bapa.cpp
Abstract:
Saturation procedure for BAPA predicates.
Assume there is a predicate
Size(S, n) for S : Array(T, Bool) and n : Int
The predicate is true if S is a set of size n.
Size(S, n), Size(T, m)
S, T are intersecting. n != m or S != T
D ---------------------------------------------------------
Size(S, n) => Size(S\T, k1), Size(S n T, k2), n = k1 + k2
Size(T, m) => Size(T\S, k3), SIze(S n T, k2), m = k2 + k3
Size(S, n)
P --------------------
Size(S, n) => n >= 0
Size(S, n), is infinite domain
B ------------------------------
Size(S, n) => default(S) = false
Size(S, n), Size(S, m)
F --------------------------------
Size(S, n), Size(S, m) => n = m
Fixing values during final check:
Size(S, n)
V -------------------
assume value(n) = n
Size(S, n), S[i1], ..., S[ik]
O -------------------------------
~distinct(i1, ... ik) or n >= k
Size(S,n)
Ak --------------------------------------------------
S[i1] & .. & S[ik] & distinct(i1, .., ik) or n < k
Q: Is this sufficient? Axiom A1 could be adjusted to add new elements i' until there are k witnesses for Size(S, k).
This is quite bad when k is very large. Instead rely on stably infiniteness or other domain properties of the theories.
When A is finite domain, or there are quantifiers there could be constraints that force domain sizes so domain sizes may have
to be enforced. A succinct way would be through domain comprehension assertions.
Finite domains:
Size(S, n), is finite domain
----------------------------
S <= |A|
Size(S, n), !S[i1], .... !S[ik], S is finite domain
----------------------------------------------------------
default(S) = false or ~distinct(i1,..,ik) or |A| - k <= n
~Size(S, m) is negative on all occurrences, S is finite domain
---------------------------------------------------------------
Size(S, n) n fresh.
Model construction for infinite domains when all Size(S, m) are negative for S.
Author:
Nikolaj Bjorner 2019-04-13
Revision History:
*/
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/rewriter/array_rewriter.h"
#include "smt/smt_context.h"
#include "smt/smt_arith_value.h"
#include "smt/theory_array_full.h"
#include "smt/theory_array_bapa.h"
#if 0
- set of native select terms that are true
- set of auxiliary select terms.
- n1, n2, n3, n4.
- a1, a2, a3, a4, a5.
-
- add select terms, such that first
#endif
namespace smt {
class theory_array_bapa::imp {
struct sz_info {
bool m_is_leaf; // has it been split into disjoint subsets already?
rational m_size; // set to >= integer if fixed in final check, otherwise -1
obj_map m_selects;
sz_info(): m_is_leaf(true), m_size(rational::minus_one()) {}
};
typedef std::pair func_decls;
ast_manager& m;
theory_array_full& th;
arith_util m_arith;
array_util m_autil;
th_rewriter m_rw;
arith_value m_arith_value;
ast_ref_vector m_pinned;
obj_map m_sizeof;
obj_map m_size_limit;
obj_map m_index_skolems;
obj_map m_size_limit_sort2skolems;
unsigned m_max_set_enumeration;
context& ctx() { return th.get_context(); }
void reset() {
for (auto& kv : m_sizeof) {
dealloc(kv.m_value);
}
}
bool is_true(expr* e) { return is_true(ctx().get_literal(e)); }
bool is_true(enode* e) { return is_true(e->get_expr()); }
bool is_true(literal l) { return ctx().is_relevant(l) && ctx().get_assignment(l) == l_true; }
bool is_leaf(sz_info& i) const { return i.m_is_leaf; }
bool is_leaf(sz_info* i) const { return is_leaf(*i); }
enode* get_root(expr* e) { return ctx().get_enode(e)->get_root(); }
bool is_select(enode* n) { return th.is_select(n); }
app_ref mk_select(expr* a, expr* i) { expr* args[2] = { a, i }; return app_ref(m_autil.mk_select(2, args), m); }
literal get_literal(expr* e) { return ctx().get_literal(e); }
literal mk_literal(expr* e) { expr_ref _e(e, m); if (!ctx().e_internalized(e)) ctx().internalize(e, false); literal lit = get_literal(e); ctx().mark_as_relevant(lit); return lit; }
literal mk_eq(expr* a, expr* b) {
expr_ref _a(a, m), _b(b, m);
literal lit = th.mk_eq(a, b, false);
ctx().mark_as_relevant(lit);
return lit;
}
void mk_th_axiom(literal l1, literal l2) {
literal lits[2] = { l1, l2 };
mk_th_axiom(2, lits);
}
void mk_th_axiom(literal l1, literal l2, literal l3) {
literal lits[3] = { l1, l2, l3 };
mk_th_axiom(3, lits);
}
void mk_th_axiom(unsigned n, literal* lits) {
TRACE("card", ctx().display_literals_verbose(tout, n, lits) << "\n";);
IF_VERBOSE(10, ctx().display_literals_verbose(verbose_stream(), n, lits) << "\n");
ctx().mk_th_axiom(th.get_id(), n, lits);
}
void update_indices() {
for (auto const& kv : m_sizeof) {
app* k = kv.m_key;
sz_info& v = *kv.m_value;
v.m_selects.reset();
if (is_true(k) && is_leaf(v)) {
enode* set = get_root(k->get_arg(0));
for (enode* parent : enode::parents(set)) {
if (is_select(parent) && parent->get_arg(0)->get_root() == set) {
if (is_true(parent)) {
v.m_selects.insert(parent->get_arg(1)->get_root(), parent->get_expr());
}
}
}
}
}
}
/**
F: Size(S, k1) & Size(S, k2) => k1 = k2
*/
lbool ensure_functional() {
lbool result = l_true;
obj_map parents;
for (auto const& kv : m_sizeof) {
app* sz1 = kv.m_key;
if (!is_true(sz1)) {
continue;
}
enode* r = get_root(sz1->get_arg(0));
app* sz2 = nullptr;
if (parents.find(r, sz2)) {
expr* k1 = sz1->get_arg(1);
expr* k2 = sz2->get_arg(1);
if (get_root(k1) != get_root(k2)) {
mk_th_axiom(~get_literal(sz1), ~get_literal(sz2), mk_eq(k1, k2));
result = l_false;
}
}
else {
parents.insert(r, sz1);
}
}
return result;
}
/**
Enforce D
*/
lbool ensure_disjoint() {
auto i = m_sizeof.begin(), end = m_sizeof.end();
for (; i != end; ++i) {
auto& kv = *i;
if (!kv.m_value->m_is_leaf) {
continue;
}
for (auto j = i; ++j != end; ) {
if (j->m_value->m_is_leaf && !ensure_disjoint(i->m_key, j->m_key)) {
return l_false;
}
}
}
return l_true;
}
bool ensure_disjoint(app* sz1, app* sz2) {
sz_info& i1 = *m_sizeof[sz1];
sz_info& i2 = *m_sizeof[sz2];
SASSERT(i1.m_is_leaf);
SASSERT(i2.m_is_leaf);
expr* s = sz1->get_arg(0);
expr* t = sz2->get_arg(0);
if (s->get_sort() != t->get_sort()) {
return true;
}
enode* r1 = get_root(s);
enode* r2 = get_root(t);
if (r1 == r2) {
return true;
}
if (!ctx().is_diseq(r1, r2) && ctx().assume_eq(r1, r2)) {
return false;
}
if (do_intersect(i1.m_selects, i2.m_selects)) {
add_disjoint(sz1, sz2);
return false;
}
return true;
}
bool do_intersect(obj_map const& s, obj_map const& t) const {
if (s.size() > t.size()) {
return do_intersect(t, s);
}
for (auto const& idx : s)
if (t.contains(idx.m_key))
return true;
return false;
}
void add_disjoint(app* sz1, app* sz2) {
sz_info& i1 = *m_sizeof[sz1];
sz_info& i2 = *m_sizeof[sz2];
SASSERT(i1.m_is_leaf);
SASSERT(i2.m_is_leaf);
expr* t = sz1->get_arg(0);
expr* s = sz2->get_arg(0);
expr_ref tms = mk_subtract(t, s);
expr_ref smt = mk_subtract(s, t);
expr_ref tns = mk_intersect(t, s);
#if 0
std::cout << tms << "\n";
std::cout << smt << "\n";
std::cout << tns << "\n";
#endif
#if 0
if (tns == sz1) {
std::cout << "SEEN " << tms << "\n";
}
if (tns == sz2) {
std::cout << "SEEN " << smt << "\n";
}
#endif
ctx().push_trail(value_trail(i1.m_is_leaf, false));
ctx().push_trail(value_trail(i2.m_is_leaf, false));
expr_ref k1(m), k2(m), k3(m);
expr_ref sz_tms(m), sz_tns(m), sz_smt(m);
k1 = m_autil.mk_card(tms);
k2 = m_autil.mk_card(tns);
k3 = m_autil.mk_card(smt);
sz_tms = m_autil.mk_has_size(tms, k1);
sz_tns = m_autil.mk_has_size(tns, k2);
sz_smt = m_autil.mk_has_size(smt, k3);
propagate(sz1, sz_tms);
propagate(sz1, sz_tns);
propagate(sz2, sz_smt);
propagate(sz2, sz_tns);
propagate(sz1, mk_eq(k1 + k2, sz1->get_arg(1)));
propagate(sz2, mk_eq(k3 + k2, sz2->get_arg(1)));
}
expr_ref mk_subtract(expr* t, expr* s) {
expr_ref d(m_autil.mk_setminus(t, s), m);
m_rw(d);
return d;
}
expr_ref mk_intersect(expr* t, expr* s) {
expr_ref i(m_autil.mk_intersection(t, s), m);
m_rw(i);
return i;
}
void propagate(expr* assumption, expr* conseq) {
propagate(assumption, mk_literal(conseq));
}
void propagate(expr* assumption, literal conseq) {
mk_th_axiom(~mk_literal(assumption), conseq);
}
/**
Enforce V
*/
lbool ensure_values_assigned() {
lbool result = l_true;
for (auto const& kv : m_sizeof) {
app* k = kv.m_key;
sz_info& i = *kv.m_value;
if (is_leaf(&i)) {
rational value;
expr* sz = k->get_arg(1);
if (!m_arith_value.get_value(sz, value)) {
return l_undef;
}
literal lit = mk_eq(sz, m_arith.mk_int(value));
if (lit != true_literal && is_true(lit)) {
ctx().push_trail(value_trail(i.m_size, value));
continue;
}
ctx().set_true_first_flag(lit.var());
result = l_false;
}
}
return result;
}
/**
Enforce Ak,
*/
lbool ensure_non_empty() {
for (auto const& kv : m_sizeof) {
sz_info& i = *kv.m_value;
app* set_sz = kv.m_key;
if (is_true(set_sz) && is_leaf(i) && i.m_selects.size() < i.m_size) {
expr* set = set_sz->get_arg(0);
expr_ref le(m_arith.mk_le(set_sz->get_arg(1), m_arith.mk_int(0)), m);
literal le_lit = mk_literal(le);
literal sz_lit = mk_literal(set_sz);
for (unsigned k = i.m_selects.size(); rational(k) < i.m_size; ++k) {
expr_ref idx = mk_index_skolem(set_sz, set, k);
app_ref sel(mk_select(set, idx), m);
mk_th_axiom(~sz_lit, le_lit, mk_literal(sel));
TRACE("card", tout << idx << " " << sel << " " << i.m_size << "\n";);
}
return l_false;
}
}
return l_true;
}
// create skolem function that is injective on integers (ensures uniqueness).
expr_ref mk_index_skolem(app* sz, expr* a, unsigned n) {
func_decls fg;
sort* s = a->get_sort();
if (!m_index_skolems.find(s, fg)) {
sort* idx_sort = get_array_domain(s, 0);
sort* dom1[2] = { s, m_arith.mk_int() };
sort* dom2[1] = { idx_sort };
func_decl* f = m.mk_fresh_func_decl("to-index", "", 2, dom1, idx_sort);
func_decl* g = m.mk_fresh_func_decl("from-index", "", 1, dom2, m_arith.mk_int());
fg = std::make_pair(f, g);
m_index_skolems.insert(s, fg);
m_pinned.push_back(f);
m_pinned.push_back(g);
m_pinned.push_back(s);
}
expr_ref nV(m_arith.mk_int(n), m);
expr_ref result(m.mk_app(fg.first, a, nV), m);
expr_ref le(m_arith.mk_le(sz->get_arg(1), nV), m);
expr_ref fr(m.mk_app(fg.second, result), m);
// set-has-size(a, k) => k <= n or g(f(a,n)) = n
mk_th_axiom(~mk_literal(sz), mk_literal(le), mk_eq(nV, fr));
return result;
}
/**
Enforce O
*/
lbool ensure_no_overflow() {
for (auto const& kv : m_sizeof) {
if (is_true(kv.m_key) && is_leaf(kv.m_value)) {
lbool r = ensure_no_overflow(kv.m_key, *kv.m_value);
if (r != l_true) return r;
}
}
return l_true;
}
lbool ensure_no_overflow(app* sz, sz_info& info) {
SASSERT(!info.m_size.is_neg());
if (info.m_size < info.m_selects.size()) {
for (auto i = info.m_selects.begin(), e = info.m_selects.end(); i != e; ++i) {
for (auto j = i; ++j != e; ) {
if (ctx().assume_eq(i->m_key, j->m_key)) {
return l_false;
}
}
}
// if all is exhausted, then add axiom: set-has-size(s, n) & s[indices] & all-diff(indices) => n >= |indices|
literal_vector lits;
lits.push_back(~mk_literal(sz));
for (auto const& kv : info.m_selects) {
lits.push_back(~mk_literal(kv.m_value));
}
if (info.m_selects.size() > 1) {
ptr_vector args;
for (auto const& kv : info.m_selects) {
args.push_back(kv.m_key->get_expr());
}
if (info.m_selects.size() == 2) {
lits.push_back(mk_eq(args[0], args[1]));
}
else {
expr_ref diff(m.mk_distinct_expanded(args.size(), args.data()), m);
lits.push_back(~mk_literal(diff));
}
}
expr_ref ge(m_arith.mk_ge(sz->get_arg(1), m_arith.mk_int(info.m_selects.size())), m);
lits.push_back(mk_literal(ge));
mk_th_axiom(lits.size(), lits.data());
return l_false;
}
return l_true;
}
class remove_sz : public trail {
ast_manager& m;
obj_map & m_table;
app* m_obj;
public:
remove_sz(ast_manager& m, obj_map& tab, app* t): m(m), m_table(tab), m_obj(t) { }
void undo() override { m.dec_ref(m_obj); dealloc(m_table[m_obj]); m_table.remove(m_obj); }
};
std::ostream& display(std::ostream& out) {
for (auto const& kv : m_sizeof) {
display(out << mk_pp(kv.m_key, m) << ": ", *kv.m_value);
}
return out;
}
std::ostream& display(std::ostream& out, sz_info& sz) {
return out << (sz.m_is_leaf ? "leaf": "") << " size: " << sz.m_size << " selects: " << sz.m_selects.size() << "\n";
}
public:
imp(theory_array_full& th):
m(th.get_manager()),
th(th),
m_arith(m),
m_autil(m),
m_rw(m),
m_arith_value(m),
m_pinned(m)
{
context& ctx = th.get_context();
m_arith_value.init(&ctx);
m_max_set_enumeration = 4;
}
~imp() {
reset();
}
void internalize_term(app* term) {
if (th.is_set_has_size(term)) {
internalize_size(term);
}
else if (th.is_set_card(term)) {
internalize_card(term);
}
}
/**
* Size(S, n) => n >= 0, default(S) = false
*/
void internalize_size(app* term) {
SASSERT(ctx().e_internalized(term));
literal lit = mk_literal(term);
expr* s = term->get_arg(0);
expr* n = term->get_arg(1);
mk_th_axiom(~lit, mk_literal(m_arith.mk_ge(n, m_arith.mk_int(0))));
sort_size const& sz = s->get_sort()->get_num_elements();
if (sz.is_infinite()) {
mk_th_axiom(~lit, mk_eq(th.mk_default(s), m.mk_false()));
}
else {
warning_msg("correct handling of finite domains is TBD");
// add upper bound on size of set.
// add case where default(S) = true, and add negative elements.
}
m_sizeof.insert(term, alloc(sz_info));
m_size_limit.insert(s, rational(2));
assert_size_limit(s, n);
m.inc_ref(term);
ctx().push_trail(remove_sz(m, m_sizeof, term));
}
/**
\brief whenever there is a cardinality function, it includes an axiom
that entails the set is finite.
*/
void internalize_card(app* term) {
SASSERT(ctx().e_internalized(term));
app_ref has_size(m_autil.mk_has_size(term->get_arg(0), term), m);
literal lit = mk_literal(has_size);
ctx().assign(lit, nullptr);
}
lbool trace_call(char const* msg, lbool r) {
if (r != l_true) {
IF_VERBOSE(2, verbose_stream() << msg << "\n");
}
return r;
}
final_check_status final_check() {
final_check_status st = m_arith_value.final_check();
if (st != FC_DONE) return st;
lbool r = trace_call("ensure_functional", ensure_functional());
if (r == l_true) update_indices();
if (r == l_true) r = trace_call("ensure_disjoint", ensure_disjoint());
if (r == l_true) r = trace_call("ensure_values_assigned", ensure_values_assigned());
if (r == l_true) r = trace_call("ensure_non_empty", ensure_non_empty());
if (r == l_true) r = trace_call("ensure_no_overflow", ensure_no_overflow());
CTRACE("card", r != l_true, display(tout););
switch (r) {
case l_true:
return FC_DONE;
case l_false:
return FC_CONTINUE;
case l_undef:
return FC_GIVEUP;
}
return FC_GIVEUP;
}
void init_model() {
for (auto const& kv : m_sizeof) {
sz_info& i = *kv.m_value;
app* sz = kv.m_key;
if (is_true(sz) && is_leaf(i) && rational(i.m_selects.size()) != i.m_size) {
warning_msg("models for BAPA is TBD");
break;
}
}
}
bool should_research(expr_ref_vector & unsat_core) {
expr* set, *sz;
for (auto & e : unsat_core) {
if (is_app(e) && is_size_limit(to_app(e), set, sz)) {
inc_size_limit(set, sz);
return true;
}
}
return false;
}
void inc_size_limit(expr* set, expr* sz) {
IF_VERBOSE(2, verbose_stream() << "inc value " << mk_pp(set, m) << "\n");
m_size_limit[set] *= rational(2);
assert_size_limit(set, sz);
}
bool is_size_limit(app* e, expr*& set, expr*& sz) {
func_decl* d = nullptr;
if (e->get_num_args() > 0 && m_size_limit_sort2skolems.find(e->get_arg(0)->get_sort(), d) && d == e->get_decl()) {
set = e->get_arg(0);
sz = e->get_arg(1);
return true;
}
else {
return false;
}
}
// has-size(s,n) & size-limit(s, n, k) => n <= k
app_ref mk_size_limit(expr* set, expr* sz) {
func_decl* sk = nullptr;
sort* s = set->get_sort();
if (!m_size_limit_sort2skolems.find(s, sk)) {
sort* dom[3] = { s, m_arith.mk_int(), m_arith.mk_int() };
sk = m.mk_fresh_func_decl("value-limit", "", 3, dom, m.mk_bool_sort());
m_pinned.push_back(sk);
m_size_limit_sort2skolems.insert(s, sk);
}
return app_ref(m.mk_app(sk, set, sz, m_arith.mk_int(m_size_limit[set])), m);
}
void assert_size_limit(expr* set, expr* sz) {
app_ref set_sz(m_autil.mk_has_size(set, sz), m);
app_ref lim(m_arith.mk_int(m_size_limit[set]), m);
app_ref size_limit = mk_size_limit(set, sz);
mk_th_axiom(~mk_literal(set_sz), ~mk_literal(size_limit), mk_literal(m_arith.mk_le(sz, lim)));
}
void add_theory_assumptions(expr_ref_vector & assumptions) {
for (auto const& kv : m_sizeof) {
expr* set = kv.m_key->get_arg(0);
expr* sz = kv.m_key->get_arg(1);
assumptions.push_back(mk_size_limit(set, sz));
}
TRACE("card", tout << "ASSUMPTIONS: " << assumptions << "\n";);
}
};
theory_array_bapa::theory_array_bapa(theory_array_full& th) { m_imp = alloc(imp, th); }
theory_array_bapa::~theory_array_bapa() { dealloc(m_imp); }
void theory_array_bapa::internalize_term(app* term) { m_imp->internalize_term(term); }
final_check_status theory_array_bapa::final_check() { return m_imp->final_check(); }
void theory_array_bapa::init_model() { m_imp->init_model(); }
bool theory_array_bapa::should_research(expr_ref_vector & unsat_core) { return m_imp->should_research(unsat_core); }
void theory_array_bapa::add_theory_assumptions(expr_ref_vector & assumptions) { m_imp->add_theory_assumptions(assumptions); }
}