z3-z3-4.13.0.src.smt.theory_fpa.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
theory_fpa.cpp
Abstract:
Floating-Point Theory Plugin
Author:
Christoph (cwinter) 2014-04-23
Revision History:
--*/
#include "ast/ast_smt2_pp.h"
#include "smt/smt_context.h"
#include "smt/theory_fpa.h"
#include "smt/theory_bv.h"
#include "smt/smt_model_generator.h"
#include "ast/fpa/bv2fpa_converter.h"
namespace smt {
theory_fpa::theory_fpa(context& ctx) :
theory(ctx, ctx.get_manager().mk_family_id("fpa")),
m_th_rw(ctx.get_manager()),
m_converter(ctx.get_manager(), m_th_rw),
m_rw(ctx.get_manager(), m_converter, params_ref()),
m_trail_stack(),
m_fpa_util(m_converter.fu()),
m_bv_util(m_converter.bu()),
m_arith_util(m_converter.au()),
m_is_initialized(true)
{
params_ref p;
p.set_bool("arith_lhs", true);
m_th_rw.updt_params(p);
}
theory_fpa::~theory_fpa()
{
m_trail_stack.reset();
if (m_is_initialized) {
dec_ref_map_key_values(m, m_conversions);
dec_ref_collection_values(m, m_is_added_to_model);
m_converter.reset();
m_rw.reset();
m_th_rw.reset();
m_is_initialized = false;
}
SASSERT(m_trail_stack.get_num_scopes() == 0);
SASSERT(m_conversions.empty());
SASSERT(m_is_added_to_model.empty());
}
app * theory_fpa::fpa_value_proc::mk_value(model_generator & mg, expr_ref_vector const & values) {
TRACE("t_fpa_detail",
ast_manager & m = m_th.get_manager();
for (unsigned i = 0; i < values.size(); i++)
tout << "value[" << i << "] = " << mk_ismt2_pp(values[i], m) << std::endl;);
mpf_manager & mpfm = m_fu.fm();
unsynch_mpz_manager & mpzm = mpfm.mpz_manager();
app * result;
scoped_mpz bias(mpzm);
mpzm.power(mpz(2), m_ebits - 1, bias);
mpzm.dec(bias);
scoped_mpz sgn_z(mpzm), sig_z(mpzm), exp_z(mpzm);
unsigned bv_sz;
if (values.size() == 1) {
SASSERT(m_bu.is_bv(values[0]));
SASSERT(m_bu.get_bv_size(values[0]) == (m_ebits + m_sbits));
rational all_r(0);
scoped_mpz all_z(mpzm);
VERIFY(m_bu.is_numeral(values[0], all_r, bv_sz));
SASSERT(bv_sz == (m_ebits + m_sbits));
SASSERT(all_r.is_int());
mpzm.set(all_z, all_r.to_mpq().numerator());
mpzm.machine_div2k(all_z, m_ebits + m_sbits - 1, sgn_z);
mpzm.mod(all_z, mpfm.m_powers2(m_ebits + m_sbits - 1), all_z);
mpzm.machine_div2k(all_z, m_sbits - 1, exp_z);
mpzm.mod(all_z, mpfm.m_powers2(m_sbits - 1), all_z);
mpzm.set(sig_z, all_z);
}
else if (values.size() == 3) {
rational sgn_r(0), exp_r(0), sig_r(0);
bool r = m_bu.is_numeral(values[0], sgn_r, bv_sz);
SASSERT(r && bv_sz == 1);
r = m_bu.is_numeral(values[1], exp_r, bv_sz);
SASSERT(r && bv_sz == m_ebits);
r = m_bu.is_numeral(values[2], sig_r, bv_sz);
SASSERT(r && bv_sz == m_sbits - 1);
(void)r;
SASSERT(mpzm.is_one(sgn_r.to_mpq().denominator()));
SASSERT(mpzm.is_one(exp_r.to_mpq().denominator()));
SASSERT(mpzm.is_one(sig_r.to_mpq().denominator()));
mpzm.set(sgn_z, sgn_r.to_mpq().numerator());
mpzm.set(exp_z, exp_r.to_mpq().numerator());
mpzm.set(sig_z, sig_r.to_mpq().numerator());
}
else
UNREACHABLE();
scoped_mpz exp_u = exp_z - bias;
SASSERT(mpzm.is_int64(exp_u));
scoped_mpf f(mpfm);
mpfm.set(f, m_ebits, m_sbits, mpzm.is_one(sgn_z), mpzm.get_int64(exp_u), sig_z);
result = m_fu.mk_value(f);
TRACE("t_fpa", tout << "result: [" <<
mpzm.to_string(sgn_z) << "," <<
mpzm.to_string(exp_z) << "," <<
mpzm.to_string(sig_z) << "] --> " <<
mk_ismt2_pp(result, m_th.get_manager()) << std::endl;);
return result;
}
app * theory_fpa::fpa_rm_value_proc::mk_value(model_generator & mg, expr_ref_vector const & values) {
SASSERT(values.size() == 1);
TRACE("t_fpa_detail",
ast_manager & m = m_th.get_manager();
for (unsigned i = 0; i < values.size(); i++)
tout << "value[" << i << "] = " << mk_ismt2_pp(values[i], m) << std::endl;);
app * result = nullptr;
unsigned bv_sz;
rational val(0);
VERIFY(m_bu.is_numeral(values[0], val, bv_sz));
SASSERT(bv_sz == 3);
switch (val.get_uint64())
{
case BV_RM_TIES_TO_AWAY: result = m_fu.mk_round_nearest_ties_to_away(); break;
case BV_RM_TIES_TO_EVEN: result = m_fu.mk_round_nearest_ties_to_even(); break;
case BV_RM_TO_NEGATIVE: result = m_fu.mk_round_toward_negative(); break;
case BV_RM_TO_POSITIVE: result = m_fu.mk_round_toward_positive(); break;
case BV_RM_TO_ZERO:
default: result = m_fu.mk_round_toward_zero();
}
TRACE("t_fpa", tout << "result: " << mk_ismt2_pp(result, m_th.get_manager()) << std::endl;);
return result;
}
expr_ref theory_fpa::convert(expr * e)
{
expr_ref res(m);
expr * ccnv;
TRACE("t_fpa", tout << "converting " << mk_ismt2_pp(e, m) << std::endl;);
if (m_conversions.find(e, ccnv)) {
res = ccnv;
TRACE("t_fpa_detail", tout << "cached:" << std::endl;
tout << mk_ismt2_pp(e, m) << std::endl << " -> " << std::endl <<
mk_ismt2_pp(res, m) << std::endl;);
}
else {
res = m_rw.convert(m_th_rw, e);
TRACE("t_fpa_detail", tout << "converted; caching:" << std::endl;
tout << mk_ismt2_pp(e, m) << std::endl << " -> " << std::endl <<
mk_ismt2_pp(res, m) << std::endl;);
m_conversions.insert(e, res);
m.inc_ref(e);
m.inc_ref(res);
m_trail_stack.push(insert_ref2_map(m, m_conversions, e, res.get()));
}
return res;
}
expr_ref theory_fpa::mk_side_conditions()
{
expr_ref res(m), t(m);
expr_ref_vector fmls(m);
proof_ref t_pr(m);
for (expr* arg : m_converter.m_extra_assertions) {
ctx.get_rewriter()(arg, t, t_pr);
fmls.push_back(std::move(t));
}
m_converter.m_extra_assertions.reset();
res = m.mk_and(fmls);
m_th_rw(res);
CTRACE("t_fpa", !m.is_true(res), tout << "side condition: " << mk_ismt2_pp(res, m) << std::endl;);
return res;
}
void theory_fpa::assert_cnstr(expr * e) {
expr_ref _e(e, m);
if (m.is_true(e)) return;
TRACE("t_fpa_detail", tout << "asserting " << mk_ismt2_pp(e, m) << "\n";);
if (m.has_trace_stream()) log_axiom_instantiation(e);
ctx.internalize(e, false);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
literal lit(ctx.get_literal(e));
ctx.mark_as_relevant(lit);
ctx.mk_th_axiom(get_id(), 1, &lit);
}
void theory_fpa::attach_new_th_var(enode * n) {
theory_var v = mk_var(n);
ctx.attach_th_var(n, this, v);
TRACE("t_fpa", tout << "new theory var: " << mk_ismt2_pp(n->get_expr(), m) << " := " << v << "\n";);
}
bool theory_fpa::internalize_atom(app * atom, bool gate_ctx) {
TRACE("t_fpa_internalize", tout << "internalizing atom: " << mk_ismt2_pp(atom, m) << std::endl;);
SASSERT(atom->get_family_id() == get_family_id());
if (ctx.b_internalized(atom))
return true;
literal l(ctx.mk_bool_var(atom));
ctx.set_var_theory(l.var(), get_id());
ctx.internalize(atom->get_args(), atom->get_num_args(), false);
expr_ref bv_atom(m_rw.convert_atom(m_th_rw, atom));
expr_ref bv_atom_w_side_c(m), atom_eq(m);
bv_atom_w_side_c = m.mk_and(bv_atom, mk_side_conditions());
m_th_rw(bv_atom_w_side_c);
atom_eq = m.mk_eq(atom, bv_atom_w_side_c);
assert_cnstr(atom_eq);
return true;
}
bool theory_fpa::internalize_term(app * term) {
TRACE("t_fpa_internalize", tout << "internalizing term: " << mk_ismt2_pp(term, m) << "\n";);
SASSERT(term->get_family_id() == get_family_id());
SASSERT(!ctx.e_internalized(term));
ctx.internalize(term->get_args(), term->get_num_args(), false);
enode * e = (ctx.e_internalized(term)) ? ctx.get_enode(term) :
ctx.mk_enode(term, false, false, true);
if (!is_attached_to_var(e)) {
attach_new_th_var(e);
// The conversion operators fp.to_* appear in non-FP constraints.
// The corresponding constraints will not be translated and added
// via convert(...) and assert_cnstr(...) in initialize_atom(...).
// Therefore, we translate and assert them here.
fpa_op_kind k = (fpa_op_kind)term->get_decl_kind();
switch (k) {
case OP_FPA_TO_FP:
case OP_FPA_TO_UBV:
case OP_FPA_TO_SBV:
case OP_FPA_TO_REAL:
case OP_FPA_TO_IEEE_BV: {
expr_ref conv = convert(term);
expr_ref eq(m.mk_eq(term, conv), m);
assert_cnstr(eq);
assert_cnstr(mk_side_conditions());
break;
}
default: /* ignore */;
}
if (!ctx.relevancy())
relevant_eh(term);
}
return true;
}
void theory_fpa::apply_sort_cnstr(enode * n, sort * s) {
TRACE("t_fpa", tout << "apply sort cnstr for: " << mk_ismt2_pp(n->get_expr(), m) << "\n";);
SASSERT(s->get_family_id() == get_family_id());
SASSERT(m_fpa_util.is_float(s) || m_fpa_util.is_rm(s));
SASSERT(m_fpa_util.is_float(n->get_expr()) || m_fpa_util.is_rm(n->get_expr()));
SASSERT(n->get_expr()->get_decl()->get_range() == s);
app * owner = n->get_expr();
if (!is_attached_to_var(n)) {
attach_new_th_var(n);
if (m_fpa_util.is_rm(s)) {
// For every RM term, we need to make sure that it's
// associated bit-vector is within the valid range.
if (!m_fpa_util.is_bv2rm(owner)) {
expr_ref valid(m), limit(m);
limit = m_bv_util.mk_numeral(4, 3);
valid = m_bv_util.mk_ule(m_converter.wrap(owner), limit);
assert_cnstr(valid);
}
}
if (!ctx.relevancy())
relevant_eh(owner);
}
}
void theory_fpa::new_eq_eh(theory_var x, theory_var y) {
enode * e_x = get_enode(x);
enode * e_y = get_enode(y);
TRACE("t_fpa", tout << "new eq: " << x << " = " << y << std::endl;
tout << mk_ismt2_pp(e_x->get_expr(), m) << std::endl << " = " << std::endl <<
mk_ismt2_pp(e_y->get_expr(), m) << std::endl;);
fpa_util & fu = m_fpa_util;
expr * xe = e_x->get_expr();
expr * ye = e_y->get_expr();
if (m_fpa_util.is_bvwrap(xe) || m_fpa_util.is_bvwrap(ye))
return;
expr_ref xc = convert(xe);
expr_ref yc = convert(ye);
TRACE("t_fpa_detail", tout << "xc = " << mk_ismt2_pp(xc, m) << std::endl <<
"yc = " << mk_ismt2_pp(yc, m) << std::endl;);
expr_ref c(m);
if ((fu.is_float(xe) && fu.is_float(ye)) ||
(fu.is_rm(xe) && fu.is_rm(ye)))
m_converter.mk_eq(xc, yc, c);
else
c = m.mk_eq(xc, yc);
m_th_rw(c);
expr_ref xe_eq_ye(m), c_eq_iff(m);
xe_eq_ye = m.mk_eq(xe, ye);
c_eq_iff = m.mk_iff(xe_eq_ye, c);
assert_cnstr(c_eq_iff);
assert_cnstr(mk_side_conditions());
}
void theory_fpa::new_diseq_eh(theory_var x, theory_var y) {
enode * e_x = get_enode(x);
enode * e_y = get_enode(y);
TRACE("t_fpa", tout << "new diseq: " << x << " != " << y << std::endl;
tout << mk_ismt2_pp(e_x->get_expr(), m) << std::endl << " != " << std::endl <<
mk_ismt2_pp(e_y->get_expr(), m) << std::endl;);
fpa_util & fu = m_fpa_util;
expr * xe = e_x->get_expr();
expr * ye = e_y->get_expr();
if (m_fpa_util.is_bvwrap(xe) || m_fpa_util.is_bvwrap(ye))
return;
expr_ref xc = convert(xe);
expr_ref yc = convert(ye);
expr_ref c(m);
if ((fu.is_float(xe) && fu.is_float(ye))||
(fu.is_rm(xe) && fu.is_rm(ye))) {
m_converter.mk_eq(xc, yc, c);
c = m.mk_not(c);
}
else {
expr_ref xc_eq_yc(m);
xc_eq_yc = m.mk_eq(xc, yc);
c = m.mk_not(xc_eq_yc);
}
m_th_rw(c);
expr_ref xe_eq_ye(m), not_xe_eq_ye(m), c_eq_iff(m);
xe_eq_ye = m.mk_eq(xe, ye);
not_xe_eq_ye = m.mk_not(xe_eq_ye);
c_eq_iff = m.mk_iff(not_xe_eq_ye, c);
assert_cnstr(c_eq_iff);
assert_cnstr(mk_side_conditions());
}
theory* theory_fpa::mk_fresh(context* new_ctx) {
return alloc(theory_fpa, *new_ctx);
}
void theory_fpa::push_scope_eh() {
theory::push_scope_eh();
m_trail_stack.push_scope();
}
void theory_fpa::pop_scope_eh(unsigned num_scopes) {
m_trail_stack.pop_scope(num_scopes);
TRACE("t_fpa", tout << "pop " << num_scopes << "; now " << m_trail_stack.get_num_scopes() << "\n";);
theory::pop_scope_eh(num_scopes);
}
void theory_fpa::assign_eh(bool_var v, bool is_true) {
expr * e = ctx.bool_var2expr(v);
TRACE("t_fpa", tout << "assign_eh for: " << v << " (" << is_true << "):\n" << mk_ismt2_pp(e, m) << "\n";);
expr_ref converted = convert(e);
converted = m.mk_and(converted, mk_side_conditions());
expr_ref cnstr(m);
cnstr = (is_true) ? m.mk_implies(e, converted) : m.mk_implies(converted, e);
m_th_rw(cnstr);
assert_cnstr(cnstr);
}
void theory_fpa::relevant_eh(app * n) {
TRACE("t_fpa", tout << "relevant_eh for: " << mk_ismt2_pp(n, m) << "\n";);
mpf_manager & mpfm = m_fpa_util.fm();
if (m_fpa_util.is_float(n) || m_fpa_util.is_rm(n)) {
if (!m_fpa_util.is_fp(n)) {
expr_ref wrapped(m), c(m);
wrapped = m_converter.wrap(n);
mpf_rounding_mode rm;
scoped_mpf val(mpfm);
if (m_fpa_util.is_rm_numeral(n, rm)) {
expr_ref rm_num(m);
rm_num = m_bv_util.mk_numeral(rm, 3);
c = m.mk_eq(wrapped, rm_num);
assert_cnstr(c);
}
else if (m_fpa_util.is_numeral(n, val)) {
expr_ref bv_val_e(m), cc_args(m);
bv_val_e = convert(n);
SASSERT(is_app(bv_val_e));
SASSERT(to_app(bv_val_e)->get_num_args() == 3);
app_ref bv_val_a(m);
bv_val_a = to_app(bv_val_e.get());
expr * args[] = { bv_val_a->get_arg(0), bv_val_a->get_arg(1), bv_val_a->get_arg(2) };
cc_args = m_bv_util.mk_concat(3, args);
c = m.mk_eq(wrapped, cc_args);
assert_cnstr(c);
assert_cnstr(mk_side_conditions());
assert_cnstr(m.mk_eq(n, bv_val_e));
}
else {
expr_ref wu(m);
wu = m.mk_eq(m_converter.unwrap(wrapped, n->get_sort()), n);
TRACE("t_fpa", tout << "w/u eq: " << std::endl << mk_ismt2_pp(wu, m) << std::endl;);
assert_cnstr(wu);
}
}
}
else if (n->get_family_id() == get_family_id()) {
// These are the conversion functions fp.to_* */
SASSERT(!m_fpa_util.is_float(n) && !m_fpa_util.is_rm(n));
}
else {
/* Theory variables can be merged when (= bv-term (bvwrap fp-term)),
in which case context::relevant_eh may call theory_fpa::relevant_eh
after theory_bv::relevant_eh, regardless of whether theory_fpa is
interested in this term. But, this can only happen because of
(bvwrap ...) terms, i.e., `n' must be a bit-vector expression,
which we can safely ignore. */
SASSERT(m_bv_util.is_bv(n));
}
}
void theory_fpa::reset_eh() {
TRACE("t_fpa", tout << "reset_eh\n";);
pop_scope_eh(m_trail_stack.get_num_scopes());
m_converter.reset();
m_rw.reset();
m_th_rw.reset();
m_trail_stack.pop_scope(m_trail_stack.get_num_scopes());
if (m_factory) {
dealloc(m_factory);
m_factory = nullptr;
}
dec_ref_map_key_values(m, m_conversions);
dec_ref_collection_values(m, m_is_added_to_model);
theory::reset_eh();
}
final_check_status theory_fpa::final_check_eh() {
TRACE("t_fpa", tout << "final_check_eh\n";);
SASSERT(m_converter.m_extra_assertions.empty());
return FC_DONE;
}
void theory_fpa::init_model(model_generator & mg) {
TRACE("t_fpa", tout << "initializing model" << std::endl; display(tout););
m_factory = alloc(fpa_value_factory, m, get_family_id());
mg.register_factory(m_factory);
}
enode* theory_fpa::ensure_enode(expr* e) {
ctx.ensure_internalized(e);
enode* n = ctx.get_enode(e);
ctx.mark_as_relevant(n);
return n;
}
app* theory_fpa::get_ite_value(expr* e) {
expr* e1, *e2, *e3;
while (m.is_ite(e, e1, e2, e3) && ctx.e_internalized(e)) {
if (ctx.get_enode(e2)->get_root() == ctx.get_enode(e)->get_root()) {
e = e2;
}
else if (ctx.get_enode(e3)->get_root() == ctx.get_enode(e)->get_root()) {
e = e3;
}
else {
break;
}
}
return to_app(e);
}
model_value_proc * theory_fpa::mk_value(enode * n, model_generator & mg) {
TRACE("t_fpa", tout << "mk_value for: " << mk_ismt2_pp(n->get_expr(), m) <<
" (sort " << mk_ismt2_pp(n->get_expr()->get_sort(), m) << ")\n";);
app_ref owner(m);
owner = get_ite_value(n->get_expr());
// If the owner is not internalized, it doesn't have an enode associated.
SASSERT(ctx.e_internalized(owner));
if (m_fpa_util.is_rm_numeral(owner) ||
m_fpa_util.is_numeral(owner)) {
return alloc(expr_wrapper_proc, owner);
}
model_value_proc * res = nullptr;
app_ref wrapped(m);
wrapped = m_converter.wrap(owner);
SASSERT(m_bv_util.is_bv(wrapped));
CTRACE("t_fpa_detail", !ctx.e_internalized(wrapped),
tout << "Model dependency not internalized: " <<
mk_ismt2_pp(wrapped, m) <<
" (owner " << (!ctx.e_internalized(owner) ? "not" : "is") <<
" internalized)" << std::endl;);
if (m_fpa_util.is_fp(owner)) {
SASSERT(to_app(owner)->get_num_args() == 3);
app_ref a0(m), a1(m), a2(m);
a0 = to_app(owner->get_arg(0));
a1 = to_app(owner->get_arg(1));
a2 = to_app(owner->get_arg(2));
unsigned ebits = m_fpa_util.get_ebits(owner->get_sort());
unsigned sbits = m_fpa_util.get_sbits(owner->get_sort());
fpa_value_proc * vp = alloc(fpa_value_proc, this, ebits, sbits);
vp->add_dependency(ctx.get_enode(a0));
vp->add_dependency(ctx.get_enode(a1));
vp->add_dependency(ctx.get_enode(a2));
TRACE("t_fpa_detail", tout << "Depends on: " <<
mk_ismt2_pp(a0, m) << " eq. cls. #" << get_enode(a0)->get_root()->get_expr()->get_id() << std::endl <<
mk_ismt2_pp(a1, m) << " eq. cls. #" << get_enode(a1)->get_root()->get_expr()->get_id() << std::endl <<
mk_ismt2_pp(a2, m) << " eq. cls. #" << get_enode(a2)->get_root()->get_expr()->get_id() << std::endl;);
res = vp;
}
else if (m_fpa_util.is_bv2rm(owner)) {
SASSERT(to_app(owner)->get_num_args() == 1);
app_ref a0(m);
a0 = to_app(owner->get_arg(0));
fpa_rm_value_proc * vp = alloc(fpa_rm_value_proc, this);
vp->add_dependency(ctx.get_enode(a0));
TRACE("t_fpa_detail", tout << "Depends on: " <<
mk_ismt2_pp(a0, m) << " eq. cls. #" << get_enode(a0)->get_root()->get_expr()->get_id() << std::endl;);
res = vp;
}
else if (ctx.e_internalized(wrapped)) {
if (m_fpa_util.is_rm(owner)) {
fpa_rm_value_proc * vp = alloc(fpa_rm_value_proc, this);
vp->add_dependency(ctx.get_enode(wrapped));
res = vp;
}
else if (m_fpa_util.is_float(owner)) {
unsigned ebits = m_fpa_util.get_ebits(owner->get_sort());
unsigned sbits = m_fpa_util.get_sbits(owner->get_sort());
fpa_value_proc * vp = alloc(fpa_value_proc, this, ebits, sbits);
enode * en = ctx.get_enode(wrapped);
vp->add_dependency(en);
TRACE("t_fpa_detail", tout << "Depends on: " << mk_ismt2_pp(wrapped, m) << " eq. cls. #" << en->get_root()->get_expr()->get_id() << std::endl;);
res = vp;
}
}
else {
unsigned ebits = m_fpa_util.get_ebits(owner->get_sort());
unsigned sbits = m_fpa_util.get_sbits(owner->get_sort());
return alloc(expr_wrapper_proc, m_fpa_util.mk_pzero(ebits, sbits));
}
SASSERT(res != 0);
return res;
}
void theory_fpa::finalize_model(model_generator & mg) {
proto_model & mdl = mg.get_model();
proto_model new_model(m);
bv2fpa_converter bv2fp(m, m_converter);
obj_hashtable seen;
bv2fp.convert_min_max_specials(&mdl, &new_model, seen);
bv2fp.convert_uf2bvuf(&mdl, &new_model, seen);
for (func_decl* f : seen)
mdl.unregister_decl(f);
for (unsigned i = 0; i < new_model.get_num_constants(); i++) {
func_decl * f = new_model.get_constant(i);
mdl.register_decl(f, new_model.get_const_interp(f));
}
for (unsigned i = 0; i < new_model.get_num_functions(); i++) {
func_decl * f = new_model.get_function(i);
func_interp * fi = new_model.get_func_interp(f)->copy();
mdl.register_decl(f, fi);
}
}
void theory_fpa::display(std::ostream & out) const
{
bool first = true;
for (enode* n : ctx.enodes()) {
theory_var v = n->get_th_var(get_family_id());
if (v != -1) {
if (first) out << "fpa theory variables:" << std::endl;
out << v << " -> " << enode_pp(n, ctx) << "\n";
first = false;
}
}
// if there are no fpa theory variables, was fp ever used?
if (first) return;
out << "bv theory variables:" << std::endl;
for (enode * n : ctx.enodes()) {
theory_var v = n->get_th_var(m_bv_util.get_family_id());
if (v != -1) out << v << " -> " << enode_pp(n, ctx) << "\n";
}
out << "arith theory variables:" << std::endl;
for (enode* n : ctx.enodes()) {
theory_var v = n->get_th_var(m_arith_util.get_family_id());
if (v != -1) out << v << " -> " << enode_pp(n, ctx) << "\n";
}
out << "equivalence classes:\n";
for (enode * n : ctx.enodes()) {
expr * r = n->get_root()->get_expr();
out << r->get_id() << " --> " << enode_pp(n, ctx) << "\n";
}
}
};