z3-z3-4.13.0.src.solver.tactic2solver.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
tactic2solver.cpp
Abstract:
Wrapper for implementing the solver interface
using a tactic.
This is a light version of the strategic solver.
Author:
Leonardo (leonardo) 2012-01-23
Notes:
--*/
#include "ast/ast_translation.h"
#include "ast/ast_pp.h"
#include "tactic/tactic.h"
#include "solver/tactic2solver.h"
#include "solver/solver_na2as.h"
#include "solver/mus.h"
#include "smt/params/smt_params.h"
#include "smt/params/smt_params_helper.hpp"
/**
\brief Simulates the incremental solver interface using a tactic.
Every query will be solved from scratch. So, this is not a good
option for applications trying to solve many easy queries that a
similar to each other.
*/
namespace {
class tactic2solver : public solver_na2as {
expr_ref_vector m_assertions;
expr_ref_vector m_last_assertions;
unsigned m_last_assertions_valid;
unsigned_vector m_scopes;
ref m_result;
tactic_ref m_tactic;
ref m_mc;
symbol m_logic;
bool m_produce_models;
bool m_produce_proofs;
bool m_produce_unsat_cores;
statistics m_stats;
bool m_minimizing = false;
public:
tactic2solver(ast_manager & m, tactic * t, params_ref const & p, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic);
~tactic2solver() override;
solver* translate(ast_manager& m, params_ref const& p) override;
void updt_params(params_ref const & p) override;
void collect_param_descrs(param_descrs & r) override;
void set_produce_models(bool f) override { m_produce_models = f; }
void assert_expr_core(expr * t) override;
ast_manager& get_manager() const override;
void push_core() override;
void pop_core(unsigned n) override;
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override;
void collect_statistics(statistics & st) const override;
void get_unsat_core(expr_ref_vector & r) override;
void get_model_core(model_ref & m) override;
proof * get_proof_core() override;
std::string reason_unknown() const override;
void set_reason_unknown(char const* msg) override;
void get_labels(svector & r) override {}
void set_progress_callback(progress_callback * callback) override {}
unsigned get_num_assertions() const override;
expr * get_assertion(unsigned idx) const override;
void set_phase(expr* e) override { }
phase* get_phase() override { return nullptr; }
void set_phase(phase* p) override { }
void move_to_front(expr* e) override { }
void register_on_clause(void* ctx, user_propagator::on_clause_eh_t& on_clause) override {
m_tactic->register_on_clause(ctx, on_clause);
}
void user_propagate_init(
void* ctx,
user_propagator::push_eh_t& push_eh,
user_propagator::pop_eh_t& pop_eh,
user_propagator::fresh_eh_t& fresh_eh) override {
m_tactic->user_propagate_init(ctx, push_eh, pop_eh, fresh_eh);
}
void user_propagate_register_fixed(user_propagator::fixed_eh_t& fixed_eh) override {
m_tactic->user_propagate_register_fixed(fixed_eh);
}
void user_propagate_register_final(user_propagator::final_eh_t& final_eh) override {
m_tactic->user_propagate_register_final(final_eh);
}
void user_propagate_register_eq(user_propagator::eq_eh_t& eq_eh) override {
m_tactic->user_propagate_register_eq(eq_eh);
}
void user_propagate_register_diseq(user_propagator::eq_eh_t& diseq_eh) override {
m_tactic->user_propagate_register_diseq(diseq_eh);
}
void user_propagate_register_expr(expr* e) override {
m_tactic->user_propagate_register_expr(e);
}
void user_propagate_register_created(user_propagator::created_eh_t& created_eh) override {
m_tactic->user_propagate_register_created(created_eh);
}
void user_propagate_register_decide(user_propagator::decide_eh_t& decide_eh) override {
m_tactic->user_propagate_register_decide(decide_eh);
}
void user_propagate_clear() override {
if (m_tactic)
m_tactic->user_propagate_clear();
}
expr_ref_vector cube(expr_ref_vector& vars, unsigned ) override {
set_reason_unknown("cubing is not supported on tactics");
IF_VERBOSE(1, verbose_stream() << "cubing is not supported on tactics\n");
return expr_ref_vector(get_manager());
}
expr* congruence_next(expr* e) override { return e; }
expr* congruence_root(expr* e) override { return e; }
model_converter_ref get_model_converter() const override { return m_mc; }
void get_levels(ptr_vector const& vars, unsigned_vector& depth) override {
throw default_exception("cannot retrieve depth from solvers created using tactics");
}
expr_ref_vector get_trail(unsigned max_level) override {
throw default_exception("cannot retrieve trail from solvers created using tactics");
}
};
ast_manager& tactic2solver::get_manager() const { return m_assertions.get_manager(); }
tactic2solver::tactic2solver(ast_manager & m, tactic * t, params_ref const & p, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic):
solver_na2as(m),
m_assertions(m),
m_last_assertions(m),
m_last_assertions_valid(false) {
m_tactic = t;
m_logic = logic;
solver::updt_params(p);
m_produce_models = produce_models;
m_produce_proofs = produce_proofs;
m_produce_unsat_cores = produce_unsat_cores;
}
tactic2solver::~tactic2solver() {
user_propagate_clear();
}
void tactic2solver::updt_params(params_ref const & p) {
solver::updt_params(p);
m_produce_unsat_cores |= p.get_bool("unsat_core", false);
}
void tactic2solver::collect_param_descrs(param_descrs & r) {
solver::collect_param_descrs(r);
if (m_tactic.get())
m_tactic->collect_param_descrs(r);
}
void tactic2solver::assert_expr_core(expr * t) {
m_last_assertions_valid = false;
m_assertions.push_back(t);
m_result = nullptr;
}
void tactic2solver::push_core() {
m_last_assertions_valid = false;
m_scopes.push_back(m_assertions.size());
m_result = nullptr;
TRACE("pop", tout << m_scopes.size() << "\n";);
}
void tactic2solver::pop_core(unsigned n) {
m_last_assertions_valid = false;
TRACE("pop", tout << m_scopes.size() << " " << n << "\n";);
n = std::min(m_scopes.size(), n);
unsigned new_lvl = m_scopes.size() - n;
unsigned old_sz = m_scopes[new_lvl];
m_assertions.shrink(old_sz);
m_scopes.shrink(new_lvl);
m_result = nullptr;
}
lbool tactic2solver::check_sat_core2(unsigned num_assumptions, expr * const * assumptions) {
if (m_tactic.get() == nullptr)
return l_false;
m_last_assertions_valid = false;
ast_manager & m = m_assertions.m();
m_result = alloc(simple_check_sat_result, m);
m_tactic->cleanup();
m_tactic->set_logic(m_logic);
m_tactic->updt_params(get_params()); // parameters are allowed to overwrite logic.
goal_ref g = alloc(goal, m, m_produce_proofs, m_produce_models, m_produce_unsat_cores);
for (expr* e : m_assertions) {
g->assert_expr(e);
}
for (unsigned i = 0; i < num_assumptions; i++) {
proof_ref pr(m.mk_asserted(assumptions[i]), m);
expr_dependency_ref ans(m.mk_leaf(assumptions[i]), m);
g->assert_expr(assumptions[i], pr, ans);
}
model_ref md;
proof_ref pr(m);
expr_dependency_ref core(m);
std::string reason_unknown = "unknown";
labels_vec labels;
TRACE("tactic", g->display(tout););
try {
switch (::check_sat(*m_tactic, g, md, labels, pr, core, reason_unknown)) {
case l_true:
m_result->set_status(l_true);
break;
case l_false:
m_result->set_status(l_false);
break;
default:
m_result->set_status(l_undef);
if (!reason_unknown.empty())
m_result->m_unknown = reason_unknown;
if (num_assumptions == 0 && m_scopes.empty()) {
m_last_assertions.reset();
g->get_formulas(m_last_assertions);
m_last_assertions_valid = true;
}
break;
}
CTRACE("tactic", md.get(), tout << *md.get() << "\n";);
TRACE("tactic",
if (m_mc) m_mc->display(tout << "mc:\n");
if (g->mc()) g->mc()->display(tout << "\ng:\n");
if (md) tout << "\nmodel:\n" << *md.get() << "\n";
);
m_mc = g->mc();
}
catch (z3_error & ex) {
TRACE("tactic2solver", tout << "exception: " << ex.msg() << "\n";);
m_result->m_proof = pr;
throw ex;
}
catch (z3_exception & ex) {
TRACE("tactic2solver", tout << "exception: " << ex.msg() << "\n";);
m_result->set_status(l_undef);
m_result->m_unknown = ex.msg();
m_result->m_proof = pr;
}
m_tactic->collect_statistics(m_result->m_stats);
m_tactic->collect_statistics(m_stats);
m_result->m_model = md;
m_result->m_proof = pr;
if (m_produce_unsat_cores) {
ptr_vector core_elems;
m.linearize(core, core_elems);
m_result->m_core.append(core_elems.size(), core_elems.data());
}
m_tactic->cleanup();
return m_result->status();
}
solver* tactic2solver::translate(ast_manager& m, params_ref const& p) {
tactic* t = m_tactic->translate(m);
tactic2solver* r = alloc(tactic2solver, m, t, p, m_produce_proofs, m_produce_models, m_produce_unsat_cores, m_logic);
r->m_result = nullptr;
ast_translation tr(m_assertions.get_manager(), m, false);
for (unsigned i = 0; i < get_num_assertions(); ++i) {
r->m_assertions.push_back(tr(get_assertion(i)));
}
return r;
}
void tactic2solver::collect_statistics(statistics & st) const {
st.copy(m_stats);
//SASSERT(m_stats.size() > 0);
}
void tactic2solver::get_unsat_core(expr_ref_vector & r) {
if (m_result.get()) {
m_result->get_unsat_core(r);
if (!m_minimizing && smt_params_helper(get_params()).core_minimize()) {
flet minimizing(m_minimizing, true);
mus mus(*this);
mus.add_soft(r.size(), r.data());
expr_ref_vector r2(m);
if (l_true == mus.get_mus(r2)) {
r.reset();
r.append(r2);
}
}
}
}
void tactic2solver::get_model_core(model_ref & m) {
if (m_result.get()) {
m_result->get_model_core(m);
}
}
proof * tactic2solver::get_proof_core() {
if (m_result.get())
return m_result->get_proof_core();
else
return nullptr;
}
std::string tactic2solver::reason_unknown() const {
if (m_result.get())
return m_result->reason_unknown();
else
return std::string("unknown");
}
void tactic2solver::set_reason_unknown(char const* msg) {
if (m_result.get()) {
m_result->set_reason_unknown(msg);
}
}
unsigned tactic2solver::get_num_assertions() const {
return m_last_assertions_valid ? m_last_assertions.size() : m_assertions.size();
}
expr * tactic2solver::get_assertion(unsigned idx) const {
return m_last_assertions_valid ? m_last_assertions.get(idx) : m_assertions.get(idx);
}
}
solver * mk_tactic2solver(ast_manager & m,
tactic * t,
params_ref const & p,
bool produce_proofs,
bool produce_models,
bool produce_unsat_cores,
symbol const & logic) {
return alloc(tactic2solver, m, t, p, produce_proofs, produce_models, produce_unsat_cores, logic);
}
namespace {
class tactic2solver_factory : public solver_factory {
ref m_tactic;
public:
tactic2solver_factory(tactic * t):m_tactic(t) {
}
solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) override {
return mk_tactic2solver(m, m_tactic.get(), p, proofs_enabled, models_enabled, unsat_core_enabled, logic);
}
};
class tactic_factory2solver_factory : public solver_factory {
tactic_factory m_factory;
public:
tactic_factory2solver_factory(tactic_factory f):m_factory(f) {
}
solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) override {
tactic * t = (*m_factory)(m, p);
return mk_tactic2solver(m, t, p, proofs_enabled, models_enabled, unsat_core_enabled, logic);
}
};
}
solver_factory * mk_tactic2solver_factory(tactic * t) {
return alloc(tactic2solver_factory, t);
}
solver_factory * mk_tactic_factory2solver_factory(tactic_factory f) {
return alloc(tactic_factory2solver_factory, f);
}