z3-z3-4.13.0.src.tactic.arith.factor_tactic.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
factor_tactic.cpp
Abstract:
Polynomial factorization tactic.
Author:
Leonardo de Moura (leonardo) 2012-02-03
Revision History:
--*/
#include "tactic/tactical.h"
#include "ast/expr2polynomial.h"
#include "ast/rewriter/rewriter_def.h"
class factor_tactic : public tactic {
struct rw_cfg : public default_rewriter_cfg {
ast_manager & m;
arith_util m_util;
unsynch_mpq_manager m_qm;
polynomial::manager m_pm;
default_expr2polynomial m_expr2poly;
polynomial::factor_params m_fparams;
bool m_split_factors;
rw_cfg(ast_manager & _m, params_ref const & p):
m(_m),
m_util(_m),
m_pm(m.limit(), m_qm),
m_expr2poly(m, m_pm) {
updt_params(p);
}
void updt_params(params_ref const & p) {
m_split_factors = p.get_bool("split_factors", true);
m_fparams.updt_params(p);
}
expr * mk_mul(unsigned sz, expr * const * args) {
SASSERT(sz > 0);
if (sz == 1)
return args[0];
return m_util.mk_mul(sz, args);
}
expr * mk_zero_for(expr * arg) {
return m_util.mk_numeral(rational(0), m_util.is_int(arg));
}
// p1^k1 * p2^k2 = 0 --> p1*p2 = 0
void mk_eq(polynomial::factors const & fs, expr_ref & result) {
expr_ref_buffer args(m);
expr_ref arg(m);
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
m_expr2poly.to_expr(fs[i], true, arg);
args.push_back(arg);
}
result = m.mk_eq(mk_mul(args.size(), args.data()), mk_zero_for(arg));
}
// p1^k1 * p2^k2 = 0 --> p1 = 0 or p2 = 0
void mk_split_eq(polynomial::factors const & fs, expr_ref & result) {
expr_ref_buffer args(m);
expr_ref arg(m);
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
m_expr2poly.to_expr(fs[i], true, arg);
args.push_back(m.mk_eq(arg, mk_zero_for(arg)));
}
if (args.size() == 1)
result = args[0];
else
result = m.mk_or(args.size(), args.data());
}
decl_kind flip(decl_kind k) {
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
switch (k) {
case OP_LT: return OP_GT;
case OP_LE: return OP_GE;
case OP_GT: return OP_LT;
case OP_GE: return OP_LE;
default:
UNREACHABLE();
return k;
}
}
// p1^{2*k1} * p2^{2*k2 + 1} >=< 0
// -->
// (p1^2)*p2 >=<0
void mk_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) {
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
expr_ref_buffer args(m);
expr_ref arg(m);
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
m_expr2poly.to_expr(fs[i], true, arg);
if (fs.get_degree(i) % 2 == 0)
arg = m_util.mk_power(arg, m_util.mk_numeral(rational(2), m_util.is_int(arg)));
args.push_back(arg);
}
expr * lhs = mk_mul(args.size(), args.data());
result = m.mk_app(m_util.get_family_id(), k, lhs, mk_zero_for(lhs));
}
// See mk_split_strict_comp and mk_split_nonstrict_comp
void split_even_odd(bool strict, polynomial::factors const & fs, expr_ref_buffer & even_eqs, expr_ref_buffer & odd_factors) {
expr_ref arg(m);
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
m_expr2poly.to_expr(fs[i], true, arg);
if (fs.get_degree(i) % 2 == 0) {
expr * eq = m.mk_eq(arg, mk_zero_for(arg));
if (strict)
even_eqs.push_back(m.mk_not(eq));
else
even_eqs.push_back(eq);
}
else {
odd_factors.push_back(arg);
}
}
}
// Strict case
// p1^{2*k1} * p2^{2*k2 + 1} >< 0
// -->
// p1 != 0 and p2 >< 0
//
// Nonstrict
// p1^{2*k1} * p2^{2*k2 + 1} >=< 0
// -->
// p1 = 0 or p2 >=< 0
//
void mk_split_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) {
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
bool strict = (k == OP_LT) || (k == OP_GT);
expr_ref_buffer args(m);
expr_ref_buffer odd_factors(m);
split_even_odd(strict, fs, args, odd_factors);
if (odd_factors.empty()) {
if (k == OP_LT) {
result = m.mk_false();
return;
}
if (k == OP_GE) {
result = m.mk_true();
return;
}
}
else {
args.push_back(m.mk_app(m_util.get_family_id(), k, mk_mul(odd_factors.size(), odd_factors.data()), mk_zero_for(odd_factors[0])));
}
SASSERT(!args.empty());
if (args.size() == 1)
result = args[0];
else if (strict)
result = m.mk_and(args.size(), args.data());
else
result = m.mk_or(args.size(), args.data());
}
br_status factor(func_decl * f, expr * lhs, expr * rhs, expr_ref & result) {
polynomial_ref p1(m_pm);
polynomial_ref p2(m_pm);
scoped_mpz d1(m_qm);
scoped_mpz d2(m_qm);
m_expr2poly.to_polynomial(lhs, p1, d1);
m_expr2poly.to_polynomial(rhs, p2, d2);
TRACE("factor_tactic_bug",
tout << "lhs: " << mk_ismt2_pp(lhs, m) << "\n";
tout << "p1: " << p1 << "\n";
tout << "d1: " << d1 << "\n";
tout << "rhs: " << mk_ismt2_pp(rhs, m) << "\n";
tout << "p2: " << p2 << "\n";
tout << "d2: " << d2 << "\n";);
scoped_mpz lcm(m_qm);
m_qm.lcm(d1, d2, lcm);
m_qm.div(lcm, d1, d1);
m_qm.div(lcm, d2, d2);
m_qm.neg(d2);
polynomial_ref p(m_pm);
p = m_pm.addmul(d1, m_pm.mk_unit(), p1, d2, m_pm.mk_unit(), p2);
if (is_const(p))
return BR_FAILED;
polynomial::factors fs(m_pm);
TRACE("factor_tactic_bug", tout << "p: " << p << "\n";);
m_pm.factor(p, fs, m_fparams);
SASSERT(fs.distinct_factors() > 0);
TRACE("factor_tactic_bug", tout << "factors:\n"; fs.display(tout); tout << "\n";);
if (fs.distinct_factors() == 1 && fs.get_degree(0) == 1)
return BR_FAILED;
if (m.is_eq(f)) {
if (m_split_factors)
mk_split_eq(fs, result);
else
mk_eq(fs, result);
}
else {
decl_kind k = f->get_decl_kind();
if (m_qm.is_neg(fs.get_constant()))
k = flip(k);
if (m_split_factors)
mk_split_comp(k, fs, result);
else
mk_comp(k, fs, result);
}
return BR_DONE;
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
if (num != 2)
return BR_FAILED;
if (m.is_eq(f) && (m_util.is_arith_expr(args[0]) || m_util.is_arith_expr(args[1])) && (!m.is_bool(args[0])))
return factor(f, args[0], args[1], result);
if (f->get_family_id() != m_util.get_family_id())
return BR_FAILED;
switch (f->get_decl_kind()) {
case OP_LT:
case OP_GT:
case OP_LE:
case OP_GE:
return factor(f, args[0], args[1], result);
}
return BR_FAILED;
}
};
struct rw : public rewriter_tpl {
rw_cfg m_cfg;
rw(ast_manager & m, params_ref const & p):
rewriter_tpl(m, m.proofs_enabled(), m_cfg),
m_cfg(m, p) {
}
};
struct imp {
ast_manager & m;
rw m_rw;
imp(ast_manager & _m, params_ref const & p):
m(_m),
m_rw(m, p) {
}
void updt_params(params_ref const & p) {
m_rw.cfg().updt_params(p);
}
void operator()(goal_ref const & g,
goal_ref_buffer & result) {
tactic_report report("factor", *g);
bool produce_proofs = g->proofs_enabled();
expr_ref new_curr(m);
proof_ref new_pr(m);
unsigned size = g->size();
for (unsigned idx = 0; !g->inconsistent() && idx < size; idx++) {
expr * curr = g->form(idx);
m_rw(curr, new_curr, new_pr);
if (produce_proofs) {
proof * pr = g->pr(idx);
new_pr = m.mk_modus_ponens(pr, new_pr);
}
g->update(idx, new_curr, new_pr, g->dep(idx));
}
g->inc_depth();
result.push_back(g.get());
}
};
imp * m_imp;
params_ref m_params;
public:
factor_tactic(ast_manager & m, params_ref const & p):
m_params(p) {
m_imp = alloc(imp, m, p);
}
tactic * translate(ast_manager & m) override {
return alloc(factor_tactic, m, m_params);
}
~factor_tactic() override {
dealloc(m_imp);
}
char const* name() const override { return "factor"; }
void updt_params(params_ref const & p) override {
m_params.append(p);
m_imp->m_rw.cfg().updt_params(m_params);
}
void collect_param_descrs(param_descrs & r) override {
r.insert("split_factors", CPK_BOOL,
"apply simplifications such as (= (* p1 p2) 0) --> (or (= p1 0) (= p2 0)).", "true");
polynomial::factor_params::get_param_descrs(r);
}
void operator()(goal_ref const & in,
goal_ref_buffer & result) override {
try {
(*m_imp)(in, result);
}
catch (z3_error & ex) {
throw ex;
}
catch (z3_exception & ex) {
throw tactic_exception(ex.msg());
}
}
void cleanup() override {
imp * d = alloc(imp, m_imp->m, m_params);
std::swap(d, m_imp);
dealloc(d);
}
};
tactic * mk_factor_tactic(ast_manager & m, params_ref const & p) {
return clean(alloc(factor_tactic, m, p));
}