z3-z3-4.13.0.src.tactic.smtlogics.qfnia_tactic.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
qflia_tactic.cpp
Abstract:
Tactic for QF_NIA
Author:
Leonardo (leonardo) 2012-02-28
Notes:
--*/
#include "tactic/tactical.h"
#include "tactic/core/simplify_tactic.h"
#include "tactic/core/propagate_values_tactic.h"
#include "tactic/core/solve_eqs_tactic.h"
#include "tactic/core/elim_uncnstr_tactic.h"
#include "tactic/bv/bit_blaster_tactic.h"
#include "tactic/bv/max_bv_sharing_tactic.h"
#include "sat/tactic/sat_tactic.h"
#include "tactic/arith/nla2bv_tactic.h"
#include "tactic/arith/lia2card_tactic.h"
#include "tactic/arith/card2bv_tactic.h"
#include "tactic/core/ctx_simplify_tactic.h"
#include "tactic/core/cofactor_term_ite_tactic.h"
#include "tactic/smtlogics/smt_tactic.h"
#include "nlsat/tactic/qfnra_nlsat_tactic.h"
static tactic * mk_qfnia_bv_solver(ast_manager & m, params_ref const & p_ref) {
params_ref p = p_ref;
p.set_bool("flat", false);
p.set_bool("hi_div0", true);
p.set_bool("elim_and", true);
p.set_bool("blast_distinct", true);
params_ref simp2_p = p;
simp2_p.set_bool("local_ctx", true);
simp2_p.set_uint("local_ctx_limit", 10000000);
params_ref mem_p = p;
mem_p.set_uint("max_memory", 100);
tactic * r = using_params(and_then(mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
using_params(mk_simplify_tactic(m), simp2_p),
mk_max_bv_sharing_tactic(m),
using_params(mk_bit_blaster_tactic(m), mem_p),
mk_sat_tactic(m)),
p);
return r;
}
static tactic * mk_qfnia_preamble(ast_manager & m, params_ref const & p_ref) {
params_ref pull_ite_p = p_ref;
pull_ite_p.set_bool("pull_cheap_ite", true);
pull_ite_p.set_bool("local_ctx", true);
pull_ite_p.set_uint("local_ctx_limit", 10000000);
params_ref ctx_simp_p = p_ref;
ctx_simp_p.set_uint("max_depth", 30);
ctx_simp_p.set_uint("max_steps", 5000000);
params_ref elim_p = p_ref;
elim_p.set_uint("max_memory",20);
return
and_then(mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
using_params(mk_ctx_simplify_tactic(m), ctx_simp_p),
using_params(mk_simplify_tactic(m), pull_ite_p),
mk_elim_uncnstr_tactic(m),
mk_lia2card_tactic(m),
mk_card2bv_tactic(m, p_ref),
skip_if_failed(using_params(mk_cofactor_term_ite_tactic(m), elim_p)));
}
static tactic * mk_qfnia_sat_solver(ast_manager & m, params_ref const & p) {
params_ref nia2sat_p = p;
nia2sat_p.set_uint("nla2bv_max_bv_size", 64);
params_ref simp_p = p;
simp_p.set_bool("hoist_mul", true); // hoist multipliers to create smaller circuits.
return and_then(using_params(mk_simplify_tactic(m), simp_p),
mk_nla2bv_tactic(m, nia2sat_p),
skip_if_failed(mk_qfnia_bv_solver(m, p)),
mk_fail_if_undecided_tactic());
}
static tactic * mk_qfnia_nlsat_solver(ast_manager & m, params_ref const & p) {
params_ref simp_p = p;
simp_p.set_bool("som", true); // expand into sums of monomials
simp_p.set_bool("factor", false);
return and_then(using_params(mk_simplify_tactic(m), simp_p),
try_for(mk_qfnra_nlsat_tactic(m, simp_p), 3000),
mk_fail_if_undecided_tactic());
}
static tactic * mk_qfnia_smt_solver(ast_manager& m, params_ref const& p) {
params_ref simp_p = p;
simp_p.set_bool("som", true); // expand into sums of monomials
return and_then(
using_params(mk_simplify_tactic(m), simp_p),
mk_smt_tactic(m));
}
tactic * mk_qfnia_tactic(ast_manager & m, params_ref const & p) {
return and_then(
mk_report_verbose_tactic("(qfnia-tactic)", 10),
mk_qfnia_preamble(m, p),
or_else(mk_qfnia_sat_solver(m, p),
try_for(mk_qfnia_smt_solver(m, p), 2000),
mk_qfnia_nlsat_solver(m, p),
mk_qfnia_smt_solver(m, p)));
}