z3-z3-4.13.0.src.tactic.smtlogics.qfufbv_tactic.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
qfufbv_tactic.cpp
Abstract:
Tactic for QF_UFBV
Author:
Leonardo (leonardo) 2012-02-27
Mikolas Janota
Notes:
--*/
#include "tactic/tactical.h"
#include "tactic/core/simplify_tactic.h"
#include "tactic/core/propagate_values_tactic.h"
#include "tactic/core/solve_eqs_tactic.h"
#include "tactic/core/elim_uncnstr_tactic.h"
#include "tactic/bv/max_bv_sharing_tactic.h"
#include "tactic/bv/bv_size_reduction_tactic.h"
#include "tactic/core/reduce_args_tactic.h"
#include "tactic/smtlogics/qfbv_tactic.h"
#include "tactic/smtlogics/qfufbv_tactic_params.hpp"
///////////////
#include "model/model_smt2_pp.h"
#include "ackermannization/lackr.h"
#include "ackermannization/ackermannization_params.hpp"
#include "tactic/smtlogics/qfufbv_ackr_model_converter.h"
///////////////
#include "sat/sat_solver/inc_sat_solver.h"
#include "tactic/smtlogics/qfaufbv_tactic.h"
#include "tactic/smtlogics/qfbv_tactic.h"
#include "tactic/smtlogics/smt_tactic.h"
#include "solver/tactic2solver.h"
#include "tactic/bv/bv_bound_chk_tactic.h"
#include "ackermannization/ackermannize_bv_tactic.h"
///////////////
class qfufbv_ackr_tactic : public tactic {
public:
qfufbv_ackr_tactic(ast_manager& m, params_ref const& p)
: m_m(m)
, m_p(p)
, m_use_sat(false)
, m_inc_use_sat(false)
{}
char const* name() const override { return "qfufbv_ackr"; }
void operator()(goal_ref const & g, goal_ref_buffer & result) override {
ast_manager& m(g->m());
tactic_report report("qfufbv_ackr", *g);
fail_if_unsat_core_generation("qfufbv_ackr", g);
fail_if_proof_generation("qfufbv_ackr", g);
TRACE("goal", g->display(tout););
// running implementation
ptr_vector flas;
const unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) flas.push_back(g->form(i));
scoped_ptr uffree_solver = setup_sat();
lackr imp(m, m_p, m_st, flas, uffree_solver.get());
const lbool o = imp.operator()();
flas.reset();
// report result
goal_ref resg(alloc(goal, *g, true));
if (o == l_false)
resg->assert_expr(m.mk_false());
if (o == l_undef) {
g->inc_depth();
result.push_back(g.get());
}
else {
result.push_back(resg.get());
}
// report model
if (g->models_enabled() && o == l_true) {
model_ref abstr_model = imp.get_model();
resg->add(mk_qfufbv_ackr_model_converter(m, imp.get_info(), abstr_model));
}
}
void updt_params(params_ref const & _p) override {
qfufbv_tactic_params p(_p);
m_use_sat = p.sat_backend();
m_inc_use_sat = p.inc_sat_backend();
}
void collect_statistics(statistics & st) const override {
ackermannization_params p(m_p);
if (!p.eager()) st.update("lackr-its", m_st.m_it);
st.update("ackr-constraints", m_st.m_ackrs_sz);
}
void reset_statistics() override { m_st.reset(); }
void cleanup() override { }
tactic* translate(ast_manager& m) override {
return alloc(qfufbv_ackr_tactic, m, m_p);
}
private:
ast_manager& m_m;
params_ref m_p;
lackr_stats m_st;
bool m_use_sat;
bool m_inc_use_sat;
solver* setup_sat() {
solver * sat = nullptr;
if (m_use_sat) {
if (m_inc_use_sat) {
sat = mk_inc_sat_solver(m_m, m_p);
}
else {
tactic_ref t = mk_qfbv_tactic(m_m, m_p);
sat = mk_tactic2solver(m_m, t.get(), m_p);
}
}
else {
tactic_ref t = mk_qfaufbv_tactic(m_m, m_p);
sat = mk_tactic2solver(m_m, t.get(), m_p);
}
SASSERT(sat != nullptr);
sat->set_produce_models(true);
return sat;
}
};
static tactic * mk_qfufbv_preamble1(ast_manager & m, params_ref const & p) {
params_ref simp2_p = p, flat_and_or_p = p;
flat_and_or_p.set_bool("flat_and_or", false);
simp2_p.set_bool("pull_cheap_ite", true);
simp2_p.set_bool("push_ite_bv", false);
simp2_p.set_bool("local_ctx", true);
simp2_p.set_uint("local_ctx_limit", 10000000);
simp2_p.set_bool("ite_extra_rules", true);
simp2_p.set_bool("mul2concat", true);
simp2_p.set_bool("flat_and_or", false);
params_ref ctx_simp_p;
ctx_simp_p.set_uint("max_depth", 32);
ctx_simp_p.set_uint("max_steps", 5000000);
return and_then(
using_params(mk_simplify_tactic(m), flat_and_or_p),
using_params(mk_propagate_values_tactic(m), flat_and_or_p),
if_no_proofs(if_no_unsat_cores(mk_bv_bound_chk_tactic(m))),
//using_params(mk_ctx_simplify_tactic(m_m), ctx_simp_p),
mk_solve_eqs_tactic(m),
mk_elim_uncnstr_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))),
mk_max_bv_sharing_tactic(m),
using_params(mk_simplify_tactic(m), simp2_p)
);
}
static tactic * mk_qfufbv_preamble(ast_manager & m, params_ref const & p) {
params_ref simp2_p = p, flat_and_or_p = p;
flat_and_or_p.set_bool("flat_and_or", false);
return and_then(using_params(mk_simplify_tactic(m), flat_and_or_p),
using_params(mk_propagate_values_tactic(m), flat_and_or_p),
mk_solve_eqs_tactic(m),
mk_elim_uncnstr_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_reduce_args_tactic(m))),
if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))),
mk_max_bv_sharing_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_ackermannize_bv_tactic(m,p)))
);
}
tactic * mk_qfufbv_tactic(ast_manager & m, params_ref const & p) {
params_ref main_p;
main_p.set_bool("elim_and", true);
main_p.set_bool("blast_distinct", true);
tactic * const preamble_st = mk_qfufbv_preamble(m, p);
tactic * st = using_params(
and_then(preamble_st,
cond(mk_is_qfbv_probe(),
mk_qfbv_tactic(m),
mk_smt_tactic(m, p))),
main_p);
st->updt_params(p);
return st;
}
tactic * mk_qfufbv_ackr_tactic(ast_manager & m, params_ref const & p) {
tactic * const preamble_t = mk_qfufbv_preamble1(m, p);
tactic * const actual_tactic = alloc(qfufbv_ackr_tactic, m, p);
return and_then(preamble_t,
cond(mk_is_qfufbv_probe(), actual_tactic, mk_smt_tactic(m, p)));
}