z3-z3-4.13.0.src.util.bit_util.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
bit_util.cpp
Abstract:
Bit hacking utilities.
Author:
Leonardo de Moura (leonardo) 2012-09-11.
Revision History:
--*/
#include "util/bit_util.h"
#include "util/util.h"
#include "util/debug.h"
#include
/**
\brief (Debugging version) Return the position of the most significant (set) bit of a
nonzero unsigned integer.
*/
#ifdef Z3DEBUG
unsigned slow_msb_pos(unsigned v) {
SASSERT(v != 0);
unsigned r = 0;
while (v != 1) {
v = v >> 1;
r++;
}
return r;
}
#endif
/**
\brief Return the position of the most significant (set) bit of a
nonzero unsigned integer.
*/
unsigned msb_pos(unsigned v) {
SASSERT(v != 0);
#ifdef Z3DEBUG
unsigned expected = slow_msb_pos(v);
#endif
unsigned r, shift;
r = (v > 0xFFFF) << 4;
v >>= r;
shift = (v > 0xFF) << 3;
v >>= shift;
r |= shift;
shift = (v > 0xF) << 2;
v >>= shift;
r |= shift;
shift = (v > 0x3) << 1;
v >>= shift;
r |= shift;
r |= (v >> 1);
SASSERT(r == expected);
return r;
}
/**
\brief Return the number of leading zeros bits in a nonzero unsigned integer.
*/
unsigned nlz_core(unsigned x) {
SASSERT(x != 0);
#ifdef __GNUC__
return __builtin_clz(x);
#else
return 31 - msb_pos(x);
#endif
}
/**
\brief Return the number of leading zero bits in data (a number of sz words).
*/
unsigned nlz(unsigned sz, unsigned const * data) {
unsigned r = 0;
unsigned i = sz;
while (i > 0) {
--i;
unsigned d = data[i];
if (d == 0)
r += 32;
else
return r + nlz_core(d);
}
return r;
}
/**
\brief Return the number of trailing zeros in a nonzero unsigned number.
*/
unsigned ntz_core(unsigned x) {
SASSERT(x != 0);
#ifdef __GNUC__
return __builtin_ctz(x);
#else
float f = static_cast(x & static_cast(-static_cast(x)));
unsigned u;
SASSERT(sizeof(u) == sizeof(f));
memcpy(&u, &f, sizeof(u));
return (u >> 23) - 0x7f;
#endif
}
/**
\brief Return the number of trailing zero bits in data (a number of sz words).
*/
unsigned ntz(unsigned sz, unsigned const * data) {
unsigned r = 0;
for (unsigned i = 0; i < sz; i++) {
unsigned d = data[i];
if (d == 0)
r += 32;
else
return r + ntz_core(d);
}
return r;
}
/**
\brief dst <- src
Truncate if src_sz > dst_sz.
Fill range [src_sz, dst_sz) of dst with zeros if dst_sz > src_sz.
*/
void copy(unsigned src_sz, unsigned const * src,
unsigned dst_sz, unsigned * dst) {
if (dst_sz >= src_sz) {
unsigned i;
for (i = 0; i < src_sz; i++)
dst[i] = src[i];
for (; i < dst_sz; i++)
dst[i] = 0;
}
else {
SASSERT(dst_sz < src_sz);
for (unsigned i = 0; i < dst_sz; i++)
dst[i] = src[i];
}
}
/**
\brief Return true if all words of data are zero.
*/
bool is_zero(unsigned sz, unsigned const * data) {
for (unsigned i = 0; i < sz; i++)
if (data[i])
return false;
return true;
}
/**
\brief Set all words of data to zero.
*/
void reset(unsigned sz, unsigned * data) {
for (unsigned i = 0; i < sz; i++)
data[i] = 0;
}
/**
\brief dst <- src << k
Store in dst the result of shifting src k bits to the left.
The result is truncated by dst_sz.
\pre src_sz != 0
\pre dst_sz != 0
*/
void shl(unsigned src_sz, unsigned const * src, unsigned k,
unsigned dst_sz, unsigned * dst) {
SASSERT(src_sz != 0);
SASSERT(dst_sz != 0);
SASSERT(k != 0);
unsigned word_shift = k / (8 * sizeof(unsigned));
unsigned bit_shift = k % (8 * sizeof(unsigned));
if (word_shift > 0) {
unsigned j = src_sz;
unsigned i = src_sz + word_shift;
if (i > dst_sz) {
if (j >= i - dst_sz)
j -= (i - dst_sz);
else
j = 0;
i = dst_sz;
}
else if (i < dst_sz) {
for (unsigned r = i; r < dst_sz; r++)
dst[r] = 0;
}
while (j > 0) {
--j; --i;
dst[i] = src[j];
}
while (i > 0) {
--i;
dst[i] = 0;
}
if (bit_shift > 0) {
unsigned comp_shift = (8 * sizeof(unsigned)) - bit_shift;
unsigned prev = 0;
for (unsigned i = word_shift; i < dst_sz; i++) {
unsigned new_prev = (dst[i] >> comp_shift);
dst[i] <<= bit_shift;
dst[i] |= prev;
prev = new_prev;
}
}
}
else {
unsigned comp_shift = (8 * sizeof(unsigned)) - bit_shift;
unsigned prev = 0;
if (src_sz > dst_sz)
src_sz = dst_sz;
for (unsigned i = 0; i < src_sz; i++) {
unsigned new_prev = (src[i] >> comp_shift);
dst[i] = src[i];
dst[i] <<= bit_shift;
dst[i] |= prev;
prev = new_prev;
}
if (dst_sz > src_sz) {
dst[src_sz] = prev;
for (unsigned i = src_sz+1; i < dst_sz; i++)
dst[i] = 0;
}
}
}
/**
\brief dst <- src >> k
Store in dst the result of shifting src k bits to the right.
\pre dst must have size sz.
\pre src_sz != 0
\pre dst_sz != 0
*/
void shr(unsigned sz, unsigned const * src, unsigned k, unsigned * dst) {
unsigned digit_shift = k / (8 * sizeof(unsigned));
if (digit_shift >= sz) {
reset(sz, dst);
return;
}
unsigned bit_shift = k % (8 * sizeof(unsigned));
unsigned comp_shift = (8 * sizeof(unsigned)) - bit_shift;
unsigned new_sz = sz - digit_shift;
if (new_sz < sz) {
unsigned i = 0;
unsigned j = digit_shift;
if (bit_shift != 0) {
for (; i < new_sz - 1; i++, j++) {
dst[i] = src[j];
dst[i] >>= bit_shift;
dst[i] |= (src[j+1] << comp_shift);
}
dst[i] = src[j];
dst[i] >>= bit_shift;
}
else {
for (; i < new_sz; i++, j++) {
dst[i] = src[j];
}
}
for (unsigned i = new_sz; i < sz; i++)
dst[i] = 0;
}
else {
SASSERT(new_sz == sz);
SASSERT(bit_shift != 0);
unsigned i = 0;
for (; i < new_sz - 1; i++) {
dst[i] = src[i];
dst[i] >>= bit_shift;
dst[i] |= (src[i+1] << comp_shift);
}
dst[i] = src[i];
dst[i] >>= bit_shift;
}
}
void shr(unsigned src_sz, unsigned const * src, unsigned k, unsigned dst_sz, unsigned * dst) {
unsigned digit_shift = k / (8 * sizeof(unsigned));
if (digit_shift >= src_sz) {
reset(dst_sz, dst);
return;
}
unsigned bit_shift = k % (8 * sizeof(unsigned));
unsigned comp_shift = (8 * sizeof(unsigned)) - bit_shift;
unsigned new_sz = src_sz - digit_shift;
if (digit_shift > 0) {
unsigned i = 0;
unsigned j = digit_shift;
if (bit_shift != 0) {
unsigned sz = new_sz;
if (new_sz > dst_sz)
sz = dst_sz;
for (; i < sz - 1; i++, j++) {
dst[i] = src[j];
dst[i] >>= bit_shift;
dst[i] |= (src[j+1] << comp_shift);
}
dst[i] = src[j];
dst[i] >>= bit_shift;
if (new_sz > dst_sz)
dst[i] |= (src[j+1] << comp_shift);
}
else {
if (new_sz > dst_sz)
new_sz = dst_sz;
for (; i < new_sz; i++, j++) {
dst[i] = src[j];
}
}
}
else {
SASSERT(new_sz == src_sz);
SASSERT(bit_shift != 0);
unsigned sz = new_sz;
if (new_sz > dst_sz)
sz = dst_sz;
unsigned i = 0;
for (; i < sz - 1; i++) {
dst[i] = src[i];
dst[i] >>= bit_shift;
dst[i] |= (src[i+1] << comp_shift);
}
dst[i] = src[i];
dst[i] >>= bit_shift;
if (new_sz > dst_sz)
dst[i] |= (src[i+1] << comp_shift);
}
for (unsigned i = new_sz; i < dst_sz; i++)
dst[i] = 0;
}
/**
\brief Return true if one of the first k bits of src is not zero.
*/
bool has_one_at_first_k_bits(unsigned sz, unsigned const * data, unsigned k) {
SASSERT(sz != 0);
unsigned word_sz = k / (8 * sizeof(unsigned));
if (word_sz > sz)
word_sz = sz;
for (unsigned i = 0; i < word_sz; i++) {
if (data[i] != 0)
return true;
}
if (word_sz < sz) {
unsigned bit_sz = k % (8 * sizeof(unsigned));
unsigned mask = (1u << bit_sz) - 1;
return (data[word_sz] & mask) != 0;
}
return false;
}
bool inc(unsigned sz, unsigned * data) {
for (unsigned i = 0; i < sz; i++) {
data[i]++;
if (data[i] != 0)
return true; // no overflow
}
return false; // overflow
}
bool dec(unsigned sz, unsigned * data) {
for (unsigned i = 0; i < sz; i++) {
data[i]--;
if (data[i] != UINT_MAX)
return true; // no underflow
}
return false; // underflow
}
bool lt(unsigned sz, unsigned * data1, unsigned * data2) {
unsigned i = sz;
while (i > 0) {
--i;
if (data1[i] < data2[i])
return true;
if (data1[i] > data2[i])
return false;
}
return false;
}
bool add(unsigned sz, unsigned const * a, unsigned const * b, unsigned * c) {
unsigned k = 0;
for (unsigned j = 0; j < sz; j++) {
unsigned r = a[j] + b[j];
bool c1 = r < a[j];
c[j] = r + k;
bool c2 = c[j] < r;
k = c1 | c2;
}
return k == 0;
}