z3-z3-4.13.0.src.util.inf_int_rational.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
inf_int_rational.h
Abstract:
Rational numbers with infenitesimals
Author:
Leonardo de Moura (leonardo) 2006-09-18.
Nikolaj Bjorner (nbjorner) 2006-10-24.
Revision History:
--*/
#pragma once
#include
#include
#include "util/debug.h"
#include "util/vector.h"
#include "util/rational.h"
class inf_int_rational {
static inf_int_rational m_zero;
static inf_int_rational m_one;
static inf_int_rational m_minus_one;
rational m_first;
int m_second;
public:
static void init(); // called from rational::initialize() only
static void finalize(); // called from rational::finalize() only
unsigned hash() const {
return m_first.hash() ^ (static_cast(m_second) + 1);
}
struct hash_proc { unsigned operator()(inf_int_rational const& r) const { return r.hash(); } };
struct eq_proc { bool operator()(inf_int_rational const& r1, inf_int_rational const& r2) const { return r1 == r2; } };
void swap(inf_int_rational & n) noexcept {
m_first.swap(n.m_first);
std::swap(m_second, n.m_second);
}
std::string to_string() const;
inf_int_rational():
m_first(rational()),
m_second(0)
{}
explicit inf_int_rational(int n):
m_first(rational(n)),
m_second(0)
{}
explicit inf_int_rational(int n, int d):
m_first(rational(n,d)),
m_second(0)
{}
explicit inf_int_rational(rational const& r, bool pos_inf):
m_first(r),
m_second(pos_inf?1:-1)
{}
explicit inf_int_rational(rational const& r):
m_first(r),
m_second(0) {}
inf_int_rational(rational const& r, int i):
m_first(r),
m_second(i) {
}
/**
\brief Set inf_int_rational to 0.
*/
void reset() {
m_first.reset();
m_second = 0;
}
bool is_int() const {
return m_first.is_int() && m_second == 0;
}
bool is_int64() const {
return m_first.is_int64() && m_second == 0;
}
bool is_uint64() const {
return m_first.is_uint64() && m_second == 0;
}
bool is_rational() const { return m_second == 0; }
int64_t get_int64() const {
SASSERT(is_int64());
return m_first.get_int64();
}
uint64_t get_uint64() const {
SASSERT(is_uint64());
return m_first.get_uint64();
}
rational const& get_rational() const {
return m_first;
}
rational get_infinitesimal() const {
return rational(m_second);
}
rational const & get_first() const { return m_first; }
inf_int_rational & operator=(const rational & r) {
m_first = r;
m_second = 0;
return *this;
}
friend inline inf_int_rational numerator(const inf_int_rational & r) {
SASSERT(r.m_second == 0);
return inf_int_rational(numerator(r.m_first));
}
friend inline inf_int_rational denominator(const inf_int_rational & r) {
SASSERT(r.m_second == 0);
return inf_int_rational(denominator(r.m_first));
}
inf_int_rational & operator+=(const inf_int_rational & r) {
m_first += r.m_first;
m_second += r.m_second;
return *this;
}
inf_int_rational & operator*=(const rational & r) {
if (!r.is_int32()) {
throw default_exception("multiplication with large rational is not possible");
}
m_first *= r;
m_second *= r.get_int32();
return *this;
}
inf_int_rational & operator-=(const inf_int_rational & r) {
m_first -= r.m_first;
m_second -= r.m_second;
return *this;
}
inf_int_rational & operator+=(const rational & r) {
m_first += r;
return *this;
}
inf_int_rational & operator-=(const rational & r) {
m_first -= r;
return *this;
}
inf_int_rational & operator++() {
++m_first;
return *this;
}
const inf_int_rational operator++(int) { inf_int_rational tmp(*this); ++(*this); return tmp; }
inf_int_rational & operator--() {
--m_first;
return *this;
}
const inf_int_rational operator--(int) { inf_int_rational tmp(*this); --(*this); return tmp; }
friend inline bool operator==(const inf_int_rational & r1, const inf_int_rational & r2) {
return r1.m_first == r2.m_first && r1.m_second == r2.m_second;
}
friend inline bool operator==(const rational & r1, const inf_int_rational & r2) {
return r1 == r2.m_first && r2.m_second == 0;
}
friend inline bool operator==(const inf_int_rational & r1, const rational & r2) {
return r1.m_first == r2 && r1.m_second == 0;
}
friend inline bool operator<(const inf_int_rational & r1, const inf_int_rational & r2) {
return
(r1.m_first < r2.m_first) ||
(r1.m_first == r2.m_first && r1.m_second < r2.m_second);
}
friend inline bool operator<(const rational & r1, const inf_int_rational & r2) {
return
(r1 < r2.m_first) ||
(r1 == r2.m_first && r2.m_second > 0);
}
friend inline bool operator<(const inf_int_rational & r1, const rational & r2) {
return
(r1.m_first < r2) ||
(r1.m_first == r2 && r1.m_second < 0);
}
void neg() {
m_first.neg();
m_second = -m_second;
}
bool is_zero() const {
return m_first.is_zero() && m_second == 0;
}
bool is_one() const {
return m_first.is_one() && m_second == 0;
}
bool is_minus_one() const {
return m_first.is_minus_one() && m_second == 0;
}
bool is_neg() const {
return
m_first.is_neg() ||
(m_first.is_zero() && m_second < 0);
}
bool is_pos() const {
return
m_first.is_pos() ||
(m_first.is_zero() && m_second > 0);
}
bool is_nonneg() const {
return
m_first.is_pos() ||
(m_first.is_zero() && m_second >= 0);
}
bool is_nonpos() const {
return
m_first.is_neg() ||
(m_first.is_zero() && m_second <= 0);
}
friend inline rational floor(const inf_int_rational & r) {
if (r.m_first.is_int()) {
if (r.m_second >= 0) {
return r.m_first;
}
return r.m_first - rational::one();
}
return floor(r.m_first);
}
friend inline rational ceil(const inf_int_rational & r) {
if (r.m_first.is_int()) {
if (r.m_second <= 0) {
return r.m_first;
}
return r.m_first + rational::one();
}
return ceil(r.m_first);
}
static const inf_int_rational & zero() {
return m_zero;
}
static const inf_int_rational & one() {
return m_one;
}
static const inf_int_rational & minus_one() {
return m_minus_one;
}
};
inline bool operator!=(const inf_int_rational & r1, const inf_int_rational & r2) {
return !operator==(r1, r2);
}
inline bool operator!=(const rational & r1, const inf_int_rational & r2) {
return !operator==(r1, r2);
}
inline bool operator!=(const inf_int_rational & r1, const rational & r2) {
return !operator==(r1, r2);
}
inline bool operator>(const inf_int_rational & r1, const inf_int_rational & r2) {
return operator<(r2, r1);
}
inline bool operator>(const inf_int_rational & r1, const rational & r2) {
return operator<(r2, r1);
}
inline bool operator>(const rational & r1, const inf_int_rational & r2) {
return operator<(r2, r1);
}
inline bool operator<=(const inf_int_rational & r1, const inf_int_rational & r2) {
return !operator>(r1, r2);
}
inline bool operator<=(const rational & r1, const inf_int_rational & r2) {
return !operator>(r1, r2);
}
inline bool operator<=(const inf_int_rational & r1, const rational & r2) {
return !operator>(r1, r2);
}
inline bool operator>=(const inf_int_rational & r1, const inf_int_rational & r2) {
return !operator<(r1, r2);
}
inline bool operator>=(const rational & r1, const inf_int_rational & r2) {
return !operator<(r1, r2);
}
inline bool operator>=(const inf_int_rational & r1, const rational & r2) {
return !operator<(r1, r2);
}
inline inf_int_rational operator+(const inf_int_rational & r1, const inf_int_rational & r2) {
return inf_int_rational(r1) += r2;
}
inline inf_int_rational operator*(const rational & r1, const inf_int_rational & r2) {
return inf_int_rational(r2) *= r1;
}
inline inf_int_rational operator-(const inf_int_rational & r1, const inf_int_rational & r2) {
return inf_int_rational(r1) -= r2;
}
inline inf_int_rational operator-(const inf_int_rational & r) {
inf_int_rational result(r);
result.neg();
return result;
}
inline std::ostream & operator<<(std::ostream & target, const inf_int_rational & r)
{
target << r.to_string();
return target;
}
inline inf_int_rational abs(const inf_int_rational & r) {
inf_int_rational result(r);
if (result.is_neg()) {
result.neg();
}
return result;
}