z3-z3-4.13.0.src.util.inf_rational.h Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
inf_rational.h
Abstract:
Rational numbers with infenitesimals
Author:
Leonardo de Moura (leonardo) 2006-09-18.
Nikolaj Bjorner (nbjorner) 2006-10-24.
Revision History:
--*/
#pragma once
#include
#include
#include "util/debug.h"
#include "util/vector.h"
#include "util/rational.h"
class inf_rational {
static inf_rational m_zero;
static inf_rational m_one;
static inf_rational m_minus_one;
rational m_first;
rational m_second;
public:
static void init(); // called from rational::initialize() only
static void finalize(); // called from rational::finalize() only
unsigned hash() const {
return m_first.hash() ^ (m_second.hash()+1);
}
struct hash_proc { unsigned operator()(inf_rational const& r) const { return r.hash(); } };
struct eq_proc { bool operator()(inf_rational const& r1, inf_rational const& r2) const { return r1 == r2; } };
void swap(inf_rational & n) noexcept {
m_first.swap(n.m_first);
m_second.swap(n.m_second);
}
std::string to_string() const {
if (m_second.is_zero()) {
return m_first.to_string();
}
std::string s = "(";
s += m_first.to_string();
if (m_second.is_neg()) {
s += " -e*";
}
else {
s += " +e*";
}
s += abs(m_second).to_string();
s += ")";
return s;
}
inf_rational() {}
explicit inf_rational(int n):
m_first(rational(n)),
m_second(rational())
{}
explicit inf_rational(int n, int d):
m_first(rational(n,d)),
m_second(rational())
{}
explicit inf_rational(rational const& r, bool pos_inf):
m_first(r),
m_second(pos_inf ? rational::one() : rational::minus_one())
{}
inf_rational(rational const& r):
m_first(r)
{
m_second.reset();
}
inf_rational(rational const& r, rational const& i):
m_first(r),
m_second(i) {
}
/**
\brief Set inf_rational to 0.
*/
void reset() {
m_first.reset();
m_second.reset();
}
bool is_int() const {
return m_first.is_int() && m_second.is_zero();
}
bool is_int64() const {
return m_first.is_int64() && m_second.is_zero();
}
bool is_uint64() const {
return m_first.is_uint64() && m_second.is_zero();
}
bool is_rational() const { return m_second.is_zero(); }
int64_t get_int64() const {
SASSERT(is_int64());
return m_first.get_int64();
}
uint64_t get_uint64() const {
SASSERT(is_uint64());
return m_first.get_uint64();
}
rational const& get_rational() const {
return m_first;
}
rational const& get_infinitesimal() const {
return m_second;
}
rational const & get_first() const { return m_first; }
inf_rational & operator=(const rational & r) {
m_first = r;
m_second.reset();
return *this;
}
friend inline inf_rational numerator(const inf_rational & r) {
SASSERT(r.m_second.is_zero());
return inf_rational(numerator(r.m_first));
}
friend inline inf_rational denominator(const inf_rational & r) {
SASSERT(r.m_second.is_zero());
return inf_rational(denominator(r.m_first));
}
inf_rational & operator+=(const inf_rational & r) {
m_first += r.m_first;
m_second += r.m_second;
return *this;
}
inf_rational & operator-=(const inf_rational & r) {
m_first -= r.m_first;
m_second -= r.m_second;
return *this;
}
inf_rational & operator+=(const rational & r) {
m_first += r;
return *this;
}
inf_rational & operator-=(const rational & r) {
m_first -= r;
return *this;
}
inf_rational & operator*=(const rational & r1) {
m_first *= r1;
m_second *= r1;
return *this;
}
//
// These operations get us out of the realm of inf_rational:
// (r1 + e*k1)*(r2 + e*k2) = (r1*r2 + (r1*k2 + r2*k1)*e)
//
// inf_rational & operator*=(const inf_rational & r)
// inf_rational & operator/=(const inf_rational & r)
// inf_rational & operator%=(const inf_rational & r)
// friend inline inf_rational div(const inf_rational & r1, const inf_rational & r2)
// inf_rational expt(int n)
// instead, we define operators that approximate some of these operations from above and below.
friend inf_rational inf_mult(inf_rational const& r1, inf_rational const& r2);
friend inf_rational sup_mult(inf_rational const& r1, inf_rational const& r2);
friend inf_rational inf_div(inf_rational const& r1, inf_rational const& r2);
friend inf_rational sup_div(inf_rational const& r1, inf_rational const& r2);
friend inf_rational inf_power(inf_rational const& r1, unsigned n);
friend inf_rational sup_power(inf_rational const& r1, unsigned n);
friend inf_rational inf_root(inf_rational const& r1, unsigned n);
friend inf_rational sup_root(inf_rational const& r1, unsigned n);
inf_rational & operator/=(const rational & r) {
m_first /= r;
m_second /= r;
return *this;
}
friend inline inf_rational operator*(const rational & r1, const inf_rational & r2);
friend inline inf_rational operator*(const inf_rational & r1, const rational & r2);
friend inline inf_rational operator/(const inf_rational & r1, const rational & r2);
inf_rational & operator++() {
++m_first;
return *this;
}
const inf_rational operator++(int) { inf_rational tmp(*this); ++(*this); return tmp; }
inf_rational & operator--() {
--m_first;
return *this;
}
const inf_rational operator--(int) { inf_rational tmp(*this); --(*this); return tmp; }
friend inline bool operator==(const inf_rational & r1, const inf_rational & r2) {
return r1.m_first == r2.m_first && r1.m_second == r2.m_second;
}
friend inline bool operator==(const rational & r1, const inf_rational & r2) {
return r1 == r2.m_first && r2.m_second.is_zero();
}
friend inline bool operator==(const inf_rational & r1, const rational & r2) {
return r1.m_first == r2 && r1.m_second.is_zero();
}
friend inline bool operator<(const inf_rational & r1, const inf_rational & r2) {
return
(r1.m_first < r2.m_first) ||
(r1.m_first == r2.m_first && r1.m_second < r2.m_second);
}
friend inline bool operator<(const rational & r1, const inf_rational & r2) {
return
(r1 < r2.m_first) ||
(r1 == r2.m_first && r2.m_second.is_pos());
}
friend inline bool operator<(const inf_rational & r1, const rational & r2) {
return
(r1.m_first < r2) ||
(r1.m_first == r2 && r1.m_second.is_neg());
}
void neg() {
m_first.neg();
m_second.neg();
}
bool is_zero() const {
return m_first.is_zero() && m_second.is_zero();
}
bool is_one() const {
return m_first.is_one() && m_second.is_zero();
}
bool is_minus_one() const {
return m_first.is_minus_one() && m_second.is_zero();
}
bool is_neg() const {
return
m_first.is_neg() ||
(m_first.is_zero() && m_second.is_neg());
}
bool is_pos() const {
return
m_first.is_pos() ||
(m_first.is_zero() && m_second.is_pos());
}
bool is_nonneg() const {
return
m_first.is_pos() ||
(m_first.is_zero() && m_second.is_nonneg());
}
bool is_nonpos() const {
return
m_first.is_neg() ||
(m_first.is_zero() && m_second.is_nonpos());
}
friend inline rational floor(const inf_rational & r) {
if (r.m_first.is_int()) {
if (r.m_second.is_nonneg()) {
return r.m_first;
}
return r.m_first - rational::one();
}
return floor(r.m_first);
}
friend inline rational ceil(const inf_rational & r) {
if (r.m_first.is_int()) {
if (r.m_second.is_nonpos()) {
return r.m_first;
}
return r.m_first + rational::one();
}
return ceil(r.m_first);
}
static const inf_rational & zero() {
return m_zero;
}
static const inf_rational & one() {
return m_one;
}
static const inf_rational & minus_one() {
return m_minus_one;
}
// Perform: this += c * k
void addmul(const rational & c, const inf_rational & k) {
m_first.addmul(c, k.m_first);
m_second.addmul(c, k.m_second);
}
// Perform: this += c * k
void submul(const rational & c, const inf_rational & k) {
m_first.submul(c, k.m_first);
m_second.submul(c, k.m_second);
}
};
inline bool operator!=(const inf_rational & r1, const inf_rational & r2) {
return !operator==(r1, r2);
}
inline bool operator!=(const rational & r1, const inf_rational & r2) {
return !operator==(r1, r2);
}
inline bool operator!=(const inf_rational & r1, const rational & r2) {
return !operator==(r1, r2);
}
inline bool operator>(const inf_rational & r1, const inf_rational & r2) {
return operator<(r2, r1);
}
inline bool operator>(const inf_rational & r1, const rational & r2) {
return operator<(r2, r1);
}
inline bool operator>(const rational & r1, const inf_rational & r2) {
return operator<(r2, r1);
}
inline bool operator<=(const inf_rational & r1, const inf_rational & r2) {
return !operator>(r1, r2);
}
inline bool operator<=(const rational & r1, const inf_rational & r2) {
return !operator>(r1, r2);
}
inline bool operator<=(const inf_rational & r1, const rational & r2) {
return !operator>(r1, r2);
}
inline bool operator>=(const inf_rational & r1, const inf_rational & r2) {
return !operator<(r1, r2);
}
inline bool operator>=(const rational & r1, const inf_rational & r2) {
return !operator<(r1, r2);
}
inline bool operator>=(const inf_rational & r1, const rational & r2) {
return !operator<(r1, r2);
}
inline inf_rational operator+(const inf_rational & r1, const inf_rational & r2) {
return inf_rational(r1) += r2;
}
inline inf_rational operator-(const inf_rational & r1, const inf_rational & r2) {
return inf_rational(r1) -= r2;
}
inline inf_rational operator-(const inf_rational & r) {
inf_rational result(r);
result.neg();
return result;
}
inline inf_rational operator*(const rational & r1, const inf_rational & r2) {
inf_rational result(r2);
result.m_first *= r1;
result.m_second *= r1;
return result;
}
inline inf_rational operator*(const inf_rational & r1, const rational & r2) {
return r2 * r1;
}
inline inf_rational operator/(const inf_rational & r1, const rational & r2) {
inf_rational result(r1);
result.m_first /= r2;
result.m_second /= r2;
return result;
}
#if 0
inf_rational inf_mult(inf_rational const& r1, inf_rational const& r2);
inf_rational sup_mult(inf_rational const& r1, inf_rational const& r2);
inf_rational inf_div(inf_rational const& r1, inf_rational const& r2);
inf_rational sup_div(inf_rational const& r1, inf_rational const& r2);
inf_rational inf_power(inf_rational const& r1, unsigned n);
inf_rational sup_power(inf_rational const& r1, unsigned n);
inf_rational inf_root(inf_rational const& r1, unsigned n);
inf_rational sup_root(inf_rational const& r1, unsigned n);
#endif
//
// inline inf_rational operator/(const inf_rational & r1, const inf_rational & r2)
// inline inf_rational operator%(const inf_rational & r1, const inf_rational & r2)
// inf_rational gcd(const inf_rational & r1, const inf_rational & r2);
// inf_rational lcm(const inf_rational & r1, const inf_rational & r2);
inline std::ostream & operator<<(std::ostream & target, const inf_rational & r)
{
target << r.to_string();
return target;
}
inline inf_rational abs(const inf_rational & r) {
inf_rational result(r);
if (result.is_neg()) {
result.neg();
}
return result;
}