z3-z3-4.13.0.src.util.rational.cpp Maven / Gradle / Ivy
The newest version!
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
rational.cpp
Abstract:
Rational numbers
Author:
Leonardo de Moura (leonardo) 2006-09-18.
Revision History:
--*/
#include
#include "util/mutex.h"
#include "util/util.h"
#include "util/rational.h"
synch_mpq_manager * rational::g_mpq_manager = nullptr;
rational rational::m_zero;
rational rational::m_one;
rational rational::m_minus_one;
vector rational::m_powers_of_two;
static void mk_power_up_to(vector & pws, unsigned n) {
if (pws.empty()) {
pws.push_back(rational::one());
}
unsigned sz = pws.size();
rational curr = pws[sz - 1];
rational two(2);
for (unsigned i = sz; i <= n; i++) {
curr *= two;
pws.push_back(curr);
}
}
static DECLARE_MUTEX(g_powers_of_two);
rational rational::power_of_two(unsigned k) {
rational result;
lock_guard lock(*g_powers_of_two);
{
if (k >= m_powers_of_two.size())
mk_power_up_to(m_powers_of_two, k+1);
result = m_powers_of_two[k];
}
return result;
}
// in inf_rational.cpp
void initialize_inf_rational();
void finalize_inf_rational();
// in inf_int_rational.cpp
void initialize_inf_int_rational();
void finalize_inf_int_rational();
void rational::initialize() {
if (!g_mpq_manager) {
ALLOC_MUTEX(g_powers_of_two);
g_mpq_manager = alloc(synch_mpq_manager);
m().set(m_zero.m_val, 0);
m().set(m_one.m_val, 1);
m().set(m_minus_one.m_val, -1);
initialize_inf_rational();
initialize_inf_int_rational();
}
}
void rational::finalize() {
finalize_inf_rational();
finalize_inf_int_rational();
m_powers_of_two.finalize();
m_zero.~rational();
m_one.~rational();
m_minus_one.~rational();
dealloc(g_mpq_manager);
g_mpq_manager = nullptr;
DEALLOC_MUTEX(g_powers_of_two);
}
bool rational::limit_denominator(rational &num, rational const& limit) {
rational n, d;
n = numerator(num);
d = denominator(num);
if (d < limit) return false;
/*
Iteratively computes approximation using continuous fraction
decomposition
p(-1) = 0, p(0) = 1
p(j) = t(j)*p(j-1) + p(j-2)
q(-1) = 1, q(0) = 0
q(j) = t(j)*q(j-1) + q(j-2)
cf[t1; t2, ..., tr] = p(r) / q(r) for r >= 1
reference: https://www.math.u-bordeaux.fr/~pjaming/M1/exposes/MA2.pdf
*/
rational p0(0), p1(1);
rational q0(1), q1(0);
while (!d.is_zero()) {
rational tj(0), rem(0);
rational p2(0), q2(0);
tj = div(n, d);
q2 = tj * q1 + q0;
p2 = tj * p1 + p0;
if (q2 >= limit) {
num = p2/q2;
return true;
}
rem = n - tj * d;
p0 = p1;
p1 = p2;
q0 = q1;
q1 = q2;
n = d;
d = rem;
}
return false;
}
bool rational::mult_inverse(unsigned num_bits, rational & result) const {
rational const& n = *this;
if (n.is_one()) {
result = n;
return true;
}
if (n.is_even())
return false;
rational g;
rational x;
rational y;
g = gcd(n, rational::power_of_two(num_bits), x, y);
if (x.is_neg()) {
x = mod(x, rational::power_of_two(num_bits));
}
SASSERT(x.is_pos());
SASSERT(mod(x * n, rational::power_of_two(num_bits)).is_one());
result = x;
return true;
}
/**
* Compute the smallest multiplicative pseudo-inverse modulo 2^num_bits:
*
* mod(n * n.pseudo_inverse(bits), 2^bits) == 2^k,
* where k is maximal such that 2^k divides n.
*
* Precondition: number is non-zero.
*/
rational rational::pseudo_inverse(unsigned num_bits) const {
rational result;
rational const& n = *this;
SASSERT(!n.is_zero()); // TODO: or we define pseudo-inverse of 0 as 0.
unsigned const k = n.trailing_zeros();
rational const odd = machine_div2k(n, k);
VERIFY(odd.mult_inverse(num_bits - k, result));
SASSERT_EQ(mod(n * result, rational::power_of_two(num_bits)), rational::power_of_two(k));
return result;
}