uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.FastMleGradient2ProcedureUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gdsc-smlm Show documentation
Show all versions of gdsc-smlm Show documentation
Genome Damage and Stability Centre SMLM Package
Software for single molecule localisation microscopy (SMLM)
The newest version!
/*-
* #%L
* Genome Damage and Stability Centre SMLM Package
*
* Software for single molecule localisation microscopy (SMLM)
* %%
* Copyright (C) 2011 - 2023 Alex Herbert
* %%
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program. If not, see
* .
* #L%
*/
package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;
import uk.ac.sussex.gdsc.smlm.function.Gradient2Function;
/**
* Create a Fast MLE gradient procedure.
*/
public final class FastMleGradient2ProcedureUtils {
/** No public constructor. */
private FastMleGradient2ProcedureUtils() {}
/**
* Create a new gradient procedure.
*
* @param x Data to fit (must be positive, i.e. the value of a Poisson process)
* @param func Gradient function
* @return the gradient procedure
*/
public static FastMleGradient2Procedure create(final double[] x, final Gradient2Function func) {
return new FastMleGradient2Procedure(x, func);
// Note:
// JUnit speed tests show the unrolled version are slower, i.e. the JVM is able to
// efficiently optimise the single for loops in the procedure. So just return the
// default implementation.
// return createUnrolled(x, func);
}
/**
* Create a new gradient procedure that has the loops unrolled.
*
* @param x Data to fit (must be positive, i.e. the value of a Poisson process)
* @param func Gradient function
* @return the gradient procedure
*/
static FastMleGradient2Procedure createUnrolled(final double[] x, final Gradient2Function func) {
switch (func.getNumberOfGradients()) {
case 5:
return new FastMleGradient2Procedure5(x, func);
case 4:
return new FastMleGradient2Procedure4(x, func);
case 6:
return new FastMleGradient2Procedure6(x, func);
default:
return new FastMleGradient2Procedure(x, func);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy