All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.LsqLvmGradientProcedureLinear Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;

import uk.ac.sussex.gdsc.smlm.function.Gradient1Function;

/**
 * Calculates the Hessian matrix (the square matrix of second-order partial derivatives of a
 * function) and the scaled gradient vector of the function's partial first derivatives with respect
 * to the parameters. This is used within the Levenberg-Marquardt method to fit a nonlinear model
 * with coefficients (a) for a set of data points (x, y).
 *
 * 

Note that the Hessian matrix is scaled by 1/2 and the gradient vector is scaled by -1/2 for * convenience in solving the non-linear model. See Numerical Recipes in C++, 2nd Ed. Equation * 15.5.8 for Nonlinear Models. */ public class LsqLvmGradientProcedureLinear extends BaseLsqLvmGradientProcedure { /** The scaled Hessian curvature matrix (size n*n). */ public final double[] alpha; /** * Instantiates a new procedure. * * @param y Data to fit * @param baseline Baseline pre-computed y-values * @param func Gradient function */ public LsqLvmGradientProcedureLinear(final double[] y, final double[] baseline, final Gradient1Function func) { super(y, baseline, func); alpha = new double[numberOfGradients * numberOfGradients]; } @Override public void execute(double value, double[] dyDa) { final double dy = y[++yi] - value; // Compute: // - the scaled Hessian matrix (the square matrix of second-order partial derivatives of a // function; // that is, it describes the local curvature of a function of many variables.) // - the scaled gradient vector of the function's partial first derivatives with respect to the // parameters for (int i = 0, index = 0; i < numberOfGradients; i++, index += i) { final double wgt = dyDa[i]; for (int k = i; k < numberOfGradients; k++) { alpha[index++] += wgt * dyDa[k]; } beta[i] += wgt * dy; } this.value += dy * dy; } @Override protected void initialiseGradient() { for (int i = 0, index = 0; i < numberOfGradients; i++, index += i) { beta[i] = 0; for (int k = i; k < numberOfGradients; k++) { alpha[index++] = 0; } } } @Override protected void finishGradient() { // Generate symmetric matrix // Adapted from org.ejml.alg.dense.misc.TransposeAlgs.square() for (int i = 0, index = 1; i < numberOfGradients; i++, index += i + 1) { for (int k = i + 1, indexOther = (i + 1) * numberOfGradients + i; k < numberOfGradients; k++, index++, indexOther += numberOfGradients) { alpha[indexOther] = alpha[index]; } } } @Override protected boolean checkGradients() { for (int i = 0, index = 0; i < numberOfGradients; i++, index += i) { if (Double.isNaN(beta[i])) { return true; } for (int k = i; k < numberOfGradients; k++) { if (Double.isNaN(alpha[index++])) { return true; } } } return false; } @Override public void getAlphaMatrix(double[][] alpha) { toMatrix(this.alpha, alpha); } @Override public double[] getAlphaLinear() { return alpha; } @Override public void getAlphaLinear(double[] alpha) { System.arraycopy(this.alpha, 0, alpha, 0, alpha.length); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy