uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.LvmGradientProcedureUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gdsc-smlm Show documentation
Show all versions of gdsc-smlm Show documentation
Genome Damage and Stability Centre SMLM Package
Software for single molecule localisation microscopy (SMLM)
The newest version!
/*-
* #%L
* Genome Damage and Stability Centre SMLM Package
*
* Software for single molecule localisation microscopy (SMLM)
* %%
* Copyright (C) 2011 - 2023 Alex Herbert
* %%
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program. If not, see
* .
* #L%
*/
package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;
import uk.ac.sussex.gdsc.smlm.function.FastLog;
import uk.ac.sussex.gdsc.smlm.function.Gradient1Function;
/**
* Create a gradient procedure for use in the Levenberg–Marquardt (LVM) algorithm.
*/
public final class LvmGradientProcedureUtils {
/** No public constructor. */
private LvmGradientProcedureUtils() {}
/**
* The type of LVM gradient procedure.
*/
public enum Type {
/** Least-squares. */
LSQ,
/** Maximum Likelihood Estimation (using LVM). */
MLE {
@Override
public boolean isMle() {
return true;
}
},
/** Weighted least-squares. */
WLSQ,
/** Fast Maximum Likelihood Estimation (using Newton iteration). */
FAST_LOG_MLE {
@Override
public boolean isMle() {
return true;
}
};
/**
* Checks if is MLE.
*
* @return true, if is MLE
*/
public boolean isMle() {
return false;
}
}
/**
* Create a new gradient calculator.
*
* @param y Data to fit
* @param func Gradient function
* @param type the type
* @param fastLog the fast log
* @return the gradient procedure
*/
public static LvmGradientProcedure create(final double[] y, final Gradient1Function func,
Type type, FastLog fastLog) {
switch (type) {
case WLSQ:
// Do not support per observation weights
return WLsqLvmGradientProcedureUtils.create(y, null, func);
case MLE:
return MleLvmGradientProcedureUtils.create(y, func);
case LSQ:
return LsqLvmGradientProcedureUtils.create(y, func);
case FAST_LOG_MLE:
return MleLvmGradientProcedureUtils.create(y, func, fastLog);
default:
throw new IllegalArgumentException("Unknown type: " + type);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy