All Downloads are FREE. Search and download functionalities are using the official Maven repository.

uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.MleLvmGradientProcedure Maven / Gradle / Ivy

Go to download

Genome Damage and Stability Centre SMLM Package Software for single molecule localisation microscopy (SMLM)

The newest version!
/*-
 * #%L
 * Genome Damage and Stability Centre SMLM Package
 *
 * Software for single molecule localisation microscopy (SMLM)
 * %%
 * Copyright (C) 2011 - 2023 Alex Herbert
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

package uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient;

import uk.ac.sussex.gdsc.smlm.function.Gradient1Function;

/**
 * Calculates the scaled Hessian matrix (the square matrix of second-order partial derivatives of a
 * function) and the scaled gradient vector of the function's partial first derivatives with respect
 * to the parameters. This is used within the Levenberg-Marquardt method to fit a nonlinear model
 * with coefficients (a) for a set of data points (x, y).
 *
 * 

This procedure computes a modified Chi-squared expression to perform Maximum Likelihood * Estimation assuming Poisson model. See Laurence & Chromy (2010) Efficient maximum likelihood * estimator. Nature Methods 7, 338-339. The input data must be Poisson distributed for this to be * relevant. */ public class MleLvmGradientProcedure extends LsqLvmGradientProcedure { /** * Instantiates a new procedure. * * @param y Data to fit (must be positive) * @param func Gradient function */ public MleLvmGradientProcedure(final double[] y, final Gradient1Function func) { super(y, func); // We could check that y is positive ... } @Override public void execute(double fi, double[] dfiDa) { ++yi; // Function must produce a strictly positive output. // --- // The code provided in Laurence & Chromy (2010) Nature Methods 7, 338-339, SI // effectively ignores any function value below zero. This could lead to a // situation where the best chisq value can be achieved by setting the output // function to produce 0 for all evaluations. // Optimally the function should be bounded to always produce a positive number. // --- if (fi > 0) { final double xi = y[yi]; // We assume y[i] is positive but must handle zero if (xi > 0) { value += (fi - xi - xi * Math.log(fi / xi)); final double xi_fi2 = xi / fi / fi; final double e = 1 - (xi / fi); for (int k = 0, i = 0; k < numberOfGradients; k++) { beta[k] -= e * dfiDa[k]; final double wgt = dfiDa[k] * xi_fi2; for (int l = 0; l <= k; l++) { alpha[i++] += wgt * dfiDa[l]; } } } else { value += fi; for (int k = 0; k < numberOfGradients; k++) { beta[k] -= dfiDa[k]; } } } } @Override public void execute(double fi) { ++yi; // Function must produce a strictly positive output. if (fi > 0) { final double xi = y[yi]; // We assume y[i] is positive but must handle zero if (xi > 0) { value += (fi - xi - xi * Math.log(fi / xi)); } else { value += fi; } } } @Override protected void finishGradient() { // Move the factor of 2 to the end value *= 2; } @Override protected void finishValue() { // Move the factor of 2 to the end value *= 2; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy